

EXP-UNC 0029492/2019

VISTO

La Resolución CD Nº 209/2017 que regula el funcionamiento de los Cursos de Posgrado de la Facultad de Matemática, Astronomía, Física y Computación; y

CONSIDERANDO

Que en su Artículo 5º, la misma establece que los cursos aprobados en una carrera de doctorado conservan su validez por 3 años, lapso durante el cual no requieren revisión;

Que por las Resoluciones CD N° 193/2019, CD N° 218/2019 y CD 234/2019 se aprobó la nómina de cursos de posgrado para el segundo cuatrimestre del año 2019;

Que el Consejo de Posgrado ha evaluado y aceptado una nueva propuesta de curso de posgrado para el segundo cuatrimestre del año 2019.

Por ello,

EL CONSEJO DIRECTIVO DE LA FACULTAD DE MATEMÁTICA, ASTRONOMÍA, FÍSICA Y COMPUTACIÓN

RESUELVE:

<u>ARTÍCULO 1º</u>: Aprobar por el término de tres (3) años el siguiente curso de posgrado no estructurado, con la carga horaria que se consigna.

Curso de Posgrado	Carga horaria
Taller de perfeccionamiento fundamentos teóricos y prácticos sobre microtomografía de rayos X, modelos tridimensionales y sus aplicaciones	40 horas

1

Facultad de Matemática. Astronomía, Eleca y Computación

EXP-UNC 0029492/2019

<u>ARTÍCULO 2º</u>: Establecer como objetivos, programa, bibliografía, modalidad de evaluación y otras especificaciones del curso de posgrado aprobado, los provistos en el Anexo que forma parte de la presente.

ARTÍCULO 3º: Notifíquese, publíquese y archívese.

DADA EN LA SALA DE SESIONES DEL CONSEJO DIRECTIVO DE LA FACULTAD DE MATEMÁTICA, ASTRONOMÍA, FÍSICA Y COMPUTACIÓN A SIETE DÍAS DEL MES DE OCTUBRE DE DOS MIL DIECINUEVE.

RESOLUCIÓN CD Nº 294/2019

SHP

Dra. SILVIA PATRICIA SILVETTI SECRETARIA GENERAL FAMAF

Dra. Ing. MIRTA IRIONDO BECANA FAMAF

Facultad de Matemásica Astronomía, Física ; Commutación

EXP-UNC 0029492/2019

Anexo de la RCD FAMAF 294/2019, página 1 de 2

TÍTULO: Taller de perfeccionamiento fundamentos teóricos y prácticos sobre microtomografía de rayos X, modelos tridimensionales y sus aplicaciones.

AÑO: 2019 CUATRIMESTRE: 2° N° DE CRÉDITOS: n.c. VIGENCIA: 3 años

CARGA HORARIA: 16 horas de teoría y 24 horas de práctica.

CARRERA/S: no corresponde

FUNDAMENTOS

La necesidad de formar en esta técnica a potenciales usuarios del micro-CT del LAMARX.

OBJETIVOS

Introducir al aprendizaje y manejo de la técnica de microtomografía de rayos X, desde su adquisición, procesamiento, modelado y visualización 3D, y de sus posibilidades de aplicación en diversas áreas como la biología, paleontología, odontología, ingeniería, y áreas afines.

PROGRAMA

Unidad 1: Día 1. Presentación del curso.

Interacción de la radiación con la materia. Ley de Lambert-Beer. Imágenes de rayos X. Fuente de contraste. Calidad de la imagen: Resolución espacial. Imágenes 2D: Aspectos matemáticos. Digitalización de una imagen. Procesamiento digital. Filtrado y suavizado. Segmentación y Detección de bordes.

Práctica 1. Presentación de los softwares. Procesamientos digitales sobre una imagen 2D de rayos X.

Unidad 2: Día 2. Fundamentos de la tomografía de rayos X.

Equipamientos actuales: tipos, clasificación. Métodos de reconstrucción matemática. Criterios de calidad y artefactos. Índice de Hounsfield y formato DICOM.

Práctica 2, Procesamientos digitales sobre una imagen 2D de rayos X. Reconstrucción digital.

Unidad 3: Día 3. La tomografía y su aplicación a ciencias biológicas.

Diferentes equipos de adquisición de imágenes médicas. Análisis de imágenes de CT. Tomografías hospitalarias vs. Microtomografía. Información a obtener, tipos de archivos y software pagos vs gratuitos/libres.

Práctica 3. Revisión de archivos, manejo y adecuación de secuencias de imágenes con imageJ. Manejo del software 3D Slicer.

Unidad 4: Día 4. Modelos 3D - CAD.

Técnicas de modelado 3D: fotogrametría, escaneo de superficie, interpolación. Malla de superficie: superficies manifold y superficies paramétricas (NURBS). Manipulación y acondicionamiento de modelos 3D: reparado de superficies no manifold, restauración de estructuras, retrodeformación, PDF-3D. - Software pagos vs gratuitos/libres.

Práctica 4. Modelado 3D. Manejo del software 3D Slicer. Obtención de PDF-3D: Meshlab / MikTeX, DesignSpark Mechanical.

Unidad 5: Día 5. El modelo 3D más allá de la visualización

Análisis morfométricos y morfo-funcionales. Cierre del curso.

Ŋ

H

Fecultad de Matemálica. Astronomía, Física y Computación

EXP-UNC 0029492/2019

Anexo de la RCD FAMAF 294/2019, página 2 de 2

PRÁCTICAS

Se trabajará con software de libre disponibilidad, provistos durante el taller.

DIA 1: Práctica 1. Presentación de los softwares. Procesamientos digitales sobre una imagen 2D de rayos X.

DIA 2: Práctica 2. Procesamientos digitales sobre una imagen 2D de rayos X. Reconstrucción digital.

DÍA 3: Práctica 3. Revisión de archivos, manejo y adecuación de secuencias de imágenes con imageJ. Manejo del software 3D Slicer.

DIA 4: Práctica 4. Modelado 3D. Manejo del software 3D Slicer. Obtención de PDF-3D: Meshlab / MikTeX, DesignSpark Mechanical.

BIBLIOGRAFÍA

- Handbook of X-Ray Spectrometry, Practical Spectroscopy Series, Van Grieken, R. E. Y Markowicz, A.A., Vol. 14, Dekker. 1993.
- Visión por computador. Imágenes digitales y aplicaciones. G. Martinsanz, J. de la Cruz García. México. Alfaomega, 2008.
- Introduction to the mathematical of medical imaging. C. Epstein. Philadelphia. Siam, 2008.
- Computed Tomography. Thorsten M. Buzug. Berlin. Springer-Verlag, 2008.
- X-ray computed tomography in biomedical engineering. R. Cierniak. Springer-Verlag. 2011.
- Fundamentals of Medical Imaging. Paul Suetens. Cambridge. Cambridge University P. 2009.
- Techniques for virtual paleontology. M. Sutton, I. Rahman, R. Garwood. West Sussex UK, Wiley- Blackwell. 2014.
- Virtual Reconstruction: A primer in computer-assisted paleontology and biomedicine. C.P.E.
 Zollikofer, M.S. Ponce de León. New Jersey. John Wiley & Sons, 2005.
- Witmer LM, Ridgely RC, Dufeau DL, Semones MC. 2008. Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and non avian dinosaurs (pp 67-88). In: Endo H and Frey R, eds. Anatomical imaging: towards a new morphology. Tokyo: Springer-Verlag.
- Tecnologias 3D (Technologies). Paleontologia, Arqueologia e fetologia. Wener Jr., H. & Lopes, J. LIVRARIA, São Paulo, 2009.
- Tecnologias 3D. Desvendando o Passado, Modelando o Futuro. Lopes, J., Brancaglion Jr., A., Azevedo, S.A. & Wener Jr., H. LEXIKON, Rio Grande do Sul, 2013.

MODALIDAD DE EVALUACIÓN

Evaluación: Los contenidos teórico-prácticos brindados durante el curso serán evaluados por medio de un examen escrito individual, que se debe realizar y entregar al finalizar el curso. Posteriormente se les entregará un certificado oficial de asistencia y/o aprobación.

REQUERIMIENTOS PARA EL CURSADO

Este curso está dirigido a investigadores, estudiantes de doctorado y/o postdoctorado en áreas como la biología, paleontología, odontología, ingeniería, y áreas afines, que busquen incursionar en técnicas de modelados 3D a partir de microtomografías de rayos X. Durante el curso se proveerá la bibliografía específica y el material necesario para el desarrollo de las clases, tanto teóricas como prácticas.

A

W