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We have developed and implemented a numerical scheme and code that computes the evolution of the
massless scalar field wave equation in Kerr spacetime, using double null coordinates. The results show a
smooth behavior across the event horizon, making it possible to give initial data outside the event horizon,
evolve the scalar field across the horizon, and keep the evolution even inside the black hole. This is the first
time that a double null evolution is performed for a scalar field in Kerr spacetime.
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L. INTRODUCTION

The scalar field equation in Kerr spacetime is a very
useful subject of study because it helps to understand the
behavior of the spacetime under linear perturbations, since
it shares the principal part of the wave equation for any
other spin weighted quantity. This was shown in Ref. [1],
where gravitational and electromagnetic perturbations of
Kerr spacetime were characterized by a master equation
with the same principal part as that of the massless scalar
wave equation.

Recent observational evidence, namely, the first gravi-
tational wave detection of black hole collisions [2] and the
first black hole image [3], use Kerr spacetime as the main
candidate for the final state of a real black hole. Since
empirical evidence only comes from black holes with
angular momentum, the theoretical interest on studding
perturbations of Kerr spacetime has renewed motivation.

In order to cover exterior and interior black hole regions,
many analytical and numerical works have used coordi-
nates that are not null to avoid coordinate singularities, such
as, for example, [4-10]. In all these works, there is a clear
need of interpreting results at the interior. In this region a
direct causal interpretation given by a double null coor-
dinate system would be ideal. However, such coordinate
system was not available at the time of all cited works.

In this work we tackle the evolution of a massless scalar
field in Kerr spacetime, from the black hole exterior to the
interior (crossing the event horizon) and using character-
istic data on a pair of null coordinates. The use of a
formalism that uses characteristic data and evolves over
retarded times is known in the studies of the asymptotic
structure of asymptotically flat spacetimes [11,12], in
which one usually deals with initial data on a section of
future null infinity and evolves in the three-dimensional
null conformal infinity. Here we present a new approach to

2470-0010/2022/105(8)/084012(17)

084012-1

the numerical study of a massless scalar field in Kerr
spacetime, based on a double characteristic initial value
problem in contrast to previous analytical and numerical
calculations that have concentrated on the Cauchy initial
value problem (see, for example, [13]). Thus, in our new
framework one can evolve in one or the other of the null
coordinates, using characteristic initial data on two null
hypersurfaces.

One of the advantages of using characteristic initial data
is the absence of constraints. Moreover, the use of null
coordinates allows for direct causal interpretation of results
and easy compactification of spacetime regions.

From a general perspective, there are important analyti-
cal results that show the feasibility of the characteristic
initial value problem in general relativity [14,15]. In
Ref. [14], it is shown that the Hilbert-Einstein equations
are well posed when data are given on two transversely
intersecting null hypersurfaces.

The state of the art on the double null scalar field
evolution can be traced to the linearized regime in the case
of Schwarzschild spacetime [16] and recently to the non-
linear regime for spherically symmetric spacetimes [17],
which due to its symmetries reduces to a two-dimensional
problem. In Kerr spacetime, the situation is much more
difficult and even initial data without angular dependence
will produce at least a three-dimensional problem.

In this article we prove that it is feasible to use our double
null coordinate system [18] to evolve a characteristic initial
value problem across the horizon of a black hole with
angular momentum, from analytical and numerical points
of view. This coordinate system has the advantage of being
smooth in a global sense, since it covers the spacetime with
full angular dependence and it is adapted to the horizons
without any divergences. We emphasize this because
previous attempts in the literature [19-22] have different
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types of divergent behavior at the axis of symmetry, as we
have shown in [18]. In contrast, in this article we show
analytically and numerically that our coordinate system
does not present any computational hazard and that one can
integrate a double null hyperbolic problem in Kerr space-
time for the desired lapse of null time, retarded or
advanced. This is the first time that a double null evolution
of a scalar field is performed in Kerr spacetime.

The article is organized as follows: In Sec. Il we resume
and introduce the definition of center-of-mass (c.m.) double
null coordinates [18] that we use. In Sec. Il we start with
the scalar field equation in Boyer-Lindquist coordinates
[23], and then we express it in c.m. double null coordinates.
We show from an analytic perspective that the equation is
well behaved across future and past exterior horizons;
consequently, the scalar field evolution can cross the
horizon in a regular way. In Sec. IV we present a
second-order-accurate numerical scheme that is adapted
for double null coordinates simulations. In Sec. V we
present the numerical results, together with two indepen-
dent precision tests: one of them about the precision order
of the numerical scheme and the other one related to energy
conservation. The results of these tests indicate that the
scalar field behavior revealed in our numerical solutions is
highly reliable and with the desired accuracy. In Sec. VI,
we summarize the main aspects of our contribution.

II. DOUBLE NULL COORDINATES

In this section we will briefly introduce the definition of
c.m. double null coordinates for Kerr spacetime. For a
detailed and complete description, see [18].

To make our notation explicit, let us begin by writing the
Kerr line element using Boyer-Lindquist [23] coordinates

ds? = (1 . 2%’) e + 4‘;" " sin? (0)drde

z T .,
—Kdrz—de)z—Esm (0)d¢?, (1)
with

2 = r? + d*cos?(0), A=r2+a%?-2mr,
T = (r* 4 a*)* — Aa’sin®(0) = 0, (2)

where the parameter m denotes the mass, and the angular
momentum of the black holes is given by J = am.

Since the principal null congruences have twist, they do
not help in the search for natural null hypersurfaces.
Therefore, one has to start by considering all possible null
geodesics. From the work of [24,25], the most general null
geodesic congruence for the Kerr spacetime can be
expressed in terms of its tangent vector

L (N [0\ .(0\e [\

All the steps of our definition are shorter and simpler if we
work with the one form V,, which in Boyer-Lindquist
coordinates is

Va= Yab Vb

> .
= Edt,~ ¥ dr,~0%d6,~ L.dd,

+,i/ (P +a*)E—aL,>— KA
A

= Edt, - drg

- (:l:\/K —[Easin(0) — sitizﬁ)]z) db,—L,dp,, (4)

where E, L,, and K (Carter constant) are conserved
quantities along each geodesic. The sign +,; determines
the congruence character. We call #, (with +,; = +) the
outgoing most general null congruence and n, (with
+,; = —) the ingoing one.

Making an adequate choice of null geodesics (see [18]),
where E =1, L, = 0, and K = K(r, @), one obtains a pair
of null congruences that allows one to define outgoing u
and ingoing v null coordinates

fa = (du)a
i, — V(2 +ad*)? —K(r,0)A dr,
A
— +[,1/K(r. 0) - a? sin(0)%d0, 5)
n, = (dv),
—di + V(i + az):— K(r,0)A dr.
+ |u\/K(r.0) - a? sin(0)2d0,, 6)

where the function K (r,#) must satisfy

,/(r’-+a2)2-KAZ—I:i|h\/K-(asin(0))2?£:0. (7)

The expression *|, determines the sign for 6, which is
chosen from thinking of the behavior of spheroidal coor-
dinates, close to a sphere, in the limit as one approaches
future null infinity following an outgoing null geodesic, so
that we take (+) for the northern hemisphere and (—) for the
southern hemisphere. It can be seen then that by imposing
Eq. (7) one guarantees that K is constant along each null
geodesic of the congruence.

The structure of Eq. (7) suggests to work with the
auxiliary function k defined from

084012-2

IF-2023-00750796-UNC-ME#FAMAF

pagina 2 de 17



DOUBLE NULL EVOLUTION OF A SCALAR FIELD IN KERR ...

PHYS. REV. D 105, 084012 (2022)

K(r,0) = a”*sin(0)* + K*(r, 0), (8)

so that the function K(r, ) can be expressed in terms of
k(r,0). All the details about the numerical scheme that we
use and its solutions can be found in [18].

In order to obtain a null coordinate system that is well
behaved across the horizon, one also has to define a new
angular coordinate

+,, % ar. (9)

dos, = dp— A

Then in the outer region, we can define the extended
version of those null coordinates as

U= —exp(—«.u) (10)
and
V =exp(k,v). (11)
In the inner region U > 0, one would use the relation

U = exp(K Uiner), (12)

where u;,,.. is the analogous inner version of the null
coordinate u in the outer region and k. is the surface
gravity given by x, = Vm? — a*/(2m(m + Vm? — a*)).
The complete and detailed description of interior regions in
terms of double null coordinates will be published
elsewhere.

III. SCALAR FIELD EQUATION

In the work of Teukolsky [1], the master equation for
linear perturbations of Kerr spacetime was presented for
different type of sources, namely, scalar field (spin s = 0),
electromagnetic field (spin s = 1), and gravitational radi-
ation (spin s = 2). In Boyer-Lindquist coordinates [23], the
massless scalar field equation (s = 0) can be written as

[(r2 + a?)? o) N 4amr Pd
A NI Y

a? 1 FPD 09 oD
+ [X - sm(())z] 97 or (A ar)
1 0 /. oD
~ sin(6 )0()( in(9) W) =0 (13)

It must be noted that Eq. (13) is not regular at the horizon
A = 0. Therefore, the scalar field evolution can not cross
the horizon unless a coordinate transformation is made. To
sort out this issue, one could use another coordinate system,
such as, for example, the Kerr-Schild coordinates or the
c.m. double null coordinates [18] that will be used in this
work. The main advantage of null coordinates is that they

— a?sin(0) ]

capture the causal character of the whole spacetime.
Therefore, a causal interpretation of results follows directly.

A. Scalar field equation in coordinates {u,v,0,¢}

The coordinate transformation can be done in two steps.
First, we can transform from Boyer-Lindquist coordinates
[23] {t,r,0,¢} to the c.m. double null coordinates [18]
{u, v,é,(p}. The relations between both coordinate sys-
tems are

VR

du = dt == =dr —k(r,0)do, (14)
R

dv =dt-|-\/TA—dr+ k(r,0)do, (15)

do = de, (16)

and Eq. (9), where

= (r* +a*)? - KA, (17)

Kr.0) = £|,\/K(r.0) - a?sin(0).  (18)

After a standard transformation procedure, one obtains

4(R+k( 9)>d2q)—2k( 9)(32‘1’—‘92—‘1’)

A dvou vl  Oudl
ob  Ob cos(60)
- ( o au> (a VR + 0gk(r, 0) + ) k(r, 9))
2a ?d
+ ~ (2mr £, \/7_€) ((‘)va(p)

2"(2mr :i:,,,\/_)( )

~ ey (3pt) ~ @6 (© 59) =0 (19

Note that if we take the limit @« - 0 we have that
k(r,0) >0, £ - r?, 9,/R - 2r, and § - /(1 —2m).
In this limit, Eq. (19) gets reduced to the massless scalar
field equation for Schwarzschild spacetime (in Eddington-
Finkelstein null coordinates), as one could expect.

B. Scalar field equation in coordinates {U,V.0,¢}

The second step is to transform coordinates from
{u,v,0,9} to the extended ones {U,V,0,¢}. These
new coordinates will allow one to cross the horizon in a
regular way. The relevant relations between both coordinate
systems are

dU = —xUdu, (20)
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dV = xVdv; (21) o 9V o 0
o ooV Kv(‘?_V' 23)
then
ﬁ oU 9 —KUi (22) Therefore, if one replace Eqs. (22) and (23) in (19), the
ou  OudU ou’ massless scalar field equation can be expressed as
J
Pd ob ob cos(0) 2akV 0*®
_aeX AUV svan x( av“’au) (d VR + gk + “n(0) k) + =y @mrk, Jﬁ)(—av&p)
2akU o PP o
———(2mr—+ —— | = 2kk(r,0) |V + U=
A (mr=+,VR) ((‘?UB(/)) <k(r )< avae auaa)

-7 (o) ~@m (0 50) =

where we have used the relation (see [18])
T =R+ k(r,0)*A. (25)

Note that, in Eq. (24), the spin coefficient p of the related
c.m. null tetrad appears as a factor, namely,

cos(6) 9%
(d\/_+dak+ (0)k> 25p. (26)

In our previous work [18], we have shown that p is well
behaved and easy to compute for all angular domains
0e [0, Il’]. However, if one uses other previous definitions
of null coordinates, that factor will have a divergent
behavior at the axis of symmetry. For example in Hay-
ward’s null coordinates definition [19], the related spin
coefficient pyaywarg i divergent at the axis of symmetry
@ =0,n).

C. Behavior across horizons

Recalling that r. = m + Vm? — a? are the roots of A,
one can see that in Eq. (24) there are three coefficients that
seem to have problems at r = r,, A = 0, for both exterior
horizons H (future) and H), (past). These coefficients are
located at the first, third, and fourth term of Eq. (24). It will
be shown that all of them are well behaved. Note that, for
exterior horizons, one has to choose x = k..

Let us start with the third and fourth terms of Eq. (24).
The strategy is to take a path to approach H;. One can
follow a curve maintaining V constant, V = V|, meanwhile
one approaches (r,). In that case, we have

%, r =
e* T (ro )+
UIV:VU.(rzr+) R = T4 A. (27)
Vory(r—r_)

From [18], we know that the well-behaved angular coor-
dinate at Hy is ¢_, then one must take (&;, =—).

(24)

Therefore, the coefficients of the third and fourth terms
of Eq. (24) near Hf behave like

2‘"‘* @2mr— VR) ~ —2ax, V, (28)
_2a+u(2mr+ VR)

2 2, (p it
n 2AKs (,)+, @mr+rtad).  (29)

Vory(r—r_ ) ¥

This means that the third and fourth terms of Eq. (24) are
well behaved at future exterior horizon Hy.

In an analogous way it can be shown that both terms
have a good behavior at past horizon H,. One can follow a
curve maintaining U constant, U = U, as one approaches
(r,). In that case we have

5T (r_ )
V|U=Uo,(rzr_) R = A, (30)

rg4r—

Ugro(r—r_) =

where the well-behaved angular coordinate at H), is ¢, ;
that is, one must take (4;, = +). Therefore, near H p the
coefficients behave like

2axV

(2mr+ VR)

2 2,1 _:—:
_ 20k )Y e P, (1)

T4 4r—

Ugr (r—r_)+

2ax, U
—% @2mr — VR) ~ 2ax., U, (32)

This means that the third and fourth terms of Eq. (24) are
well behaved at past exterior horizon H .
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The remaining coefficient to analyze appears in the first
term of Eq. (24). From [18], we have a useful expression for
the product UV which is valid even at r = r,,
_ezx+(r+f(fk(r.o')de')(r_);—;

rg4r-

(ro)(r—ro) =

Then, near (r, ), for both exterior horizons H ¥ and H P such
coefficient can be expressed like

UV, = A, (33)

r—

T 42 2t [ K 0)d0) (L yi=
4K2ZUV|I‘=I‘+ = £ - - ry4r- (r ) ’ (34)

(ro)(ry—ro) ™

which is clearly well behaved.

It is important to mention that the c.m. double null
coordinates can also be extended through the Cauchy
horizons C* and C~, which are located in the inner region
at r = r_. Such study will be published in a future article.

IV. NUMERICAL SCHEME

A. Generic scheme

In this section we will describe a generic numerical
scheme that is adapted for double null coordinates simu-
lations. It is based on previous works [16,17], where double
null simulations were carried out.

We can start with Eq. (24), leaving in the left-hand side
the cross-derivative and putting all the rest of the terms in
the right-hand side. Then, we can express it with a more
compact notation

i F(x", @ (35)

" X% Ox*OxP

ob  Pd
aVoU )

The main idea of the algorithm is to work with a basic
grid that consists of four-point grid blocks, see Fig. 1.
Then one can use centered finite-difference approximations

Fo 1
OVOU ™ asUsV
—®(U+6U,V—-8V)—D(U 56U,V +8V)

+®(U-6U,V—-38V)|+0(8U)*+0O(sV)%.  (36)

[®(U+8U,V+5V)

If one considers

hy
oU = —, 37
; (37)
and then evaluates (36) at point O (see Fig. 1), one obtains
ovou)l,” hyhy v Lo

which is exactly the same expression used in [16,17].
Following the same notation of Eq. (35),

®4

2 N

FIG. 1. Basic grid of double null numerical scheme. The scalar
field values are known at points 1-3. The value at point 4 needs to
be approximated by the numerical scheme.

PP
(W) ’0 = Flo, (39)
where
ov| P
Flo=F( Uy Vo, @y, =—| ,——| |, (40
|0 ( 0 0 |0 dxao axaaxﬂ 0) ( )

we can express the numeric approximation of ®, as

Dy~ D3 + Dy — Dy + (hyhy)F|,
+ O[hyh}) + Olhyh}). (41)

In the case of equal grid spacing in U and V, namely,
(hy = hy = h), we get the central equation of the double
null numerical scheme

O~ Oy + D, — D, + h2F|) + O[hY). (42)

The algorithm is as follows: One starts with known data in
®,, ®,, and @5 and then P is estimated by (42). In the next
step, one moves to another grid point by an increment hy,
along the V direction, and again one has a four-point grid
block that allows one to integrate ®4. Once V ,, is reached,
where V € [V in, Vinax)» One returns to V.= V... but now
the grid point displacement is along the U direction by an
amount of A Then, the whole process is repeated again.
This algorithm is consistent with initial data given over a
region {(Upin, V) U (U, Vi) }-

If the grid U, V has N? points, to reach the last grid point
U maxs Vmax» One needs to perform N? integration steps.
Therefore, the global error will be
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€global = N*€local- (43)
From (42), in this case the local error is
elocat © O[h*]. (44)
If the grid spacing is h = O[1/N], one has
€global ¥ O[hzl- (45)

This means that the double null numerical scheme is
second-order accurate.

In practice, F|, has to be computed numerically, whose
value we call (F|y),,m- Then, to satisfy (45) one needs to
approximate the right-hand side of (35) with a local error of
order O(h?), which means that

(F|0)num (F|0)exzx:t + O(hz) (46)
In this way, the product 4% (F ) yum that appears in Eq. (42),
will give the expected local error (44), from which one
obtains the desired global error (45).

B. Numerical scheme in Kerr spacetime

Unlike previous works of double null simulations in
spherical symmetric spacetimes [16,17], in the Kerr case
(with axial symmetry), the partial differential Eq. (35)
involves first- and second-order angular derivatives and
even cross-derivatives between null and angular
coordinates.

To compute such derivatives, one must consider the
angular dependence
O =0(U,V,0,¢),

with 0 €[0,7],¢ € [0,27]. (47)

Each cross-derivative null angular, is computed as

(%%%f”d@%J+OWM+WMﬂ(M
(%) - D[(gﬁ) ] +O(hy)? + O(hg)",  (49)
(a%,) R [(%) 0] +O(hy)* + O(hy)",  (50)
(5;%;)0==l”[(g$> ]*'0(»02+<Xh)" (51)

and the angular derivatives as

= DDg[(®)lo] + O(hy)", (53)

(3;)) 0
(),

where @ |, can be approximated in the same way as [16,17]

@l = (252) +o0. 69

The operators D% and DD, are the well-known finite-
difference approximations for the first- and second-order
derivatives, with error order O(h,«)". In this work we use
n =4 for angular derivatives. As usual in hyperbolic
equations, there will be a grid spacing relation between
null coordinates and angular ones, in order to preserve the
numerical stability. Such condition is known as the
Courant-Friedrichs-Lewy (CFL) condition.

The previous derivative approximations are used to
compute the right-hand side of Eq. (35),

®)|o] + O(hg)", (54)

(Flo)um = (Flo)exaa + O(h?) + O(hg)* + O(hy)*.  (56)

In this way, one obtains the desired precision (46), such that
the numerical scheme becomes second-order accurate, with
global error (45).

Finally, itis important to mention that, in the same way as
[17], we will use a two step predictor-corrector scheme. In
the first step, the derivatives with respect to null coordinates
are computed with first-order approximations, namely,

b
au) |,
)
av)l,

where the angular and cross-derivatives are computed with
Eqgs. (48)—(54). After this first step, one has

= (Flo)exact + O(h), (59)

= (<I)4)exnct + O(h3)

D3 - D,
-

+ O(hy), (57)

Dy -
i

+O(hy), (58)

(Flo)num
(6)4)num (60)

In the second step, one uses ®, to compute the derivatives as

(50).~
()l

DDy + Dy — D,
2hy

+ O(hy)?,

(61)

(DZ —-d, + ¢4 —
2hy

+O0(hy)?,  (62)

(%)‘ = DD[(®) o] + O(hg)", (52) and thc'n one computes the cross-derivatiycs (.48)—(5 1) with
0 the desired order for the error. Note that, in this second step,
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there is no need to compute angular derivatives again,
because in the first step they were already computed
(52)~(54).

In this way, after the second step, one approximates F|,
with the desired accuracy, namely,

(F|0)num = (F|0)exa:t + O(hz)’ (63)

(q)4)num = (¢4)exmt + 0(h4) (64)

C. Axially symmetric initial data

The numerical difficulties of computing the derivatives
with respect to ¢ coordinate at the poles, which is usual in
spherical coordinates, demands of one to work with differ-
ent coordinate patches for the numeric computation, as was
done in [26]. This is a nontrivial task and demands a long
time development. Therefore, the compromise between
results and time leads us to consider axially symmetric
initial data, which allows us to avoid the mentioned
difficulties, but also maintains enough complexity to give
nontrivial initial data with angular dependence on 6.

If the initial data do not depend on coordinate ¢, we can
write Eq. (24) as

P [ A
ovou [4szuv]
{ (Vdg-F Uad)) (d \/—+dek+°°g(9)k>

v n(0)
_2 k V()2—¢+ U()z—cb
M\ VovaeT " auae
1 a(., 0b

Note that the right-hand overall factor in Eq. (65) is well
behaved at the exterior horizon, see (34).

D. Angular dependence on 6

The axial symmetry and smoothness of ®(U,V,0) is
related to the fact that the @ first derivative is zero at the
poles, namely,

o®
00

=0. (66)
0=0,r

Then we can compute the last term of Eq. (65) using

I’Hopital rule
1 0 ob )
Ll"( )0‘9 ( n(6) ‘99)] 0=0,1 N 2<W)‘0=0.3' (67)

As we have already indicated previously, we can compute
fourth-order @ derivatives using centered finite-difference

operators. For instance, for the first derivative with respect
to @, one has

D[@(0)] —ﬁ

—8D(0— hg) +D(0—2hy)) + O(hg)*,  (68)

D(0+2hg) + 8D(0+ hy)

and for the second derivative

DD} [®(0)] = e (— (O +2hy) + 16D(0 + hy)
0
—30®(0) + 16®(0 — hy) — D(0 — 2hy))
+ O(hy)*. (69)

Then, to use these centered expressions, even at the first
two grid points near & = 0 and the last two grid points near
6 = &, one can use ghost points

d)ghost(f) =0—hyg) = D0 =0+ hy),
o (0 = 0 — 2g) = B0 = 0+ 2hy),
Dghost(0 = 7 + hg) = P(0 = 7 — hy),

Dohost (0 = 7 + 2hg) = ©(0 = 7 — 2hy), (70)
which has the advantage that one can use (68) and (69) at
all points of the grid and also numerically guarantees that
(66) is satisfied at the poles. It should be remarked that this
is not an extra assumption, since it is just a convenient way
to incorporate (66) in the code.

For the nonaxially symmetric case, we plan to use other
methods in order to circumvent the usual numerical
problems at the axis using standard spherical coordinates.

In order to obtain more convenient expressions to
compute the right-hand side of Eq. (65), we can start with
the coefficient

cos(0)
(a\/—+a,,k+ (0)k> (71)

where the last term seems to be problematic at the poles. In
this case, we can use I’'Hopital’s rule at the poles

cos(0)
im —
0=0.7 sin(6)

k(r.0) = 0k(r.0) oo, (72)

The first term of coefficient (71),

ar(r? 4+ a®) — AD,K(r,0) —
2VR

IR = K(r, 0)(2r—2m)’

(73)

can also be expressed in a more convenient way in order to
avoid r derivatives. We can use the K equation, see [18],
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OK 4|, YOOK (74
ar VR 00

where ® =K (r,0) —a?sin(6)%. Then we can express (73) as

4r(P + a®) + |,A Y2 9K — K(2r —2m)
2VR '

which can also be expressed in terms of k, by using the
relation of Eq. (18) to obtain

VR = (75)

2VR
A58 (24 sin(0) cos(0) + 2k(r,0) Dok (r, 0))
+
2VR
(a*sin?(0) + k2(r, 0))(2r —2m)

- o . (76)

E. Grid construction

In Eq. (65) the coordinate r appears explicitly. However,
for each pair of values U, V, there is a two-dimensional
surface rg, which in Boyer-Lindquist coordinates is
described by r(0), see [18]. Such relation is also revealed
in Eq. (33). Therefore, to compute the right-hand side of
(65) we need a relation of the type r = r(U, V,0). We can
start with Eq. (33) and evaluate at € = 0,

e

py o T =) e ()

; =0. (77)

Then, from (77), one can use any numerical method to
compute r(U,V,0 =0). We have used the Newton-
Raphson method with precision error of 1 x 10714,

The next step is to compute the full dependence
r(U,V,0). For a pair of fixed values U, V,, one gets
the differential equation for r(0) (two-dimensional space-
like surface r;), see [18],

dr k(r,0)A
where the initial data for Eq. (78) are
r(@=0)=ro(Us,Vs, 60 =0). (79)

We integrate Eq. (78) with the fourth-order Runge-Kutta
method (RK4). Note that, in each RK4 step, a new value
like r(@ + hg) will be out of the original grid where k(r, 0)
was computed. Therefore, we use a bidimensional inter-
polation method with Legendre polynomials in order to
evaluate the right-hand side of Eq. (78), even in every

intermediate step of RK4. We have double checked these
calculations by also solving (33) by the secant method.

V. NUMERICAL EVOLUTION
A. The grid

We chose to work on the domain

Ue(Uy=-1,Uy,=1], (80)
VeVe=05V,=25| (81)
0 €0, z. (82)

Numerically, we use a grid of Ny = Ny =301 and
Ny = 201 points, with grid spacing

hy =~ 6.66 x 1073, (83)
hy ~ 6.66 x 1073, (84)
hg =~ 1.57 x 1072, (85)

It was verified numerically that such grid spacing satisfies
the CFL condition.

B. Sets of initial data
Based on previous works [16,17], the spacetime region
D where we place initial data is
D :={(U,y,V,0) U (U,V,,0)}, (86)
which graphically consists of two lines in the causal
diagram (see Fig. 2), namely, U=U, and V =V,
(orthogonal lines between each other). In a similar way
as [16], the initial data are given by

®(Uy, V.,0) #0, (87)

DU, Vy,0) =0. (88)
In the conformal diagram of Fig. 2, there is an scaled
representation of the initial data domain and the whole
numerical evolution domain. Note that, using c.m. double
null coordinates, one obtains, for the first time, a conformal
causal description of spacetime, with full angular depend-
ence 0 € [0,7] and ¢ = [0, 2z]. Previous conformal dia-
grams in literature, see [24,25], were restricted to 0 = 0, x,
which means only along the axis of symmetry. More details
about this subject will be published in a separate article.

We decided to work with different types of initial data in
order to show the robustness of the numerical scheme and
code. The first initial data type has a bell shape on (V, 6).
We call it “Bell-init data” and it is defined by
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FIG. 2. Conformal diagram of Kerr spacetime in c.m. double
null coordinates. The initial data domain is drawn with dashed
lines in red color. The initial data ®(U, = —1, V,#) are nonzero
over the blue line for armonic-init data (see Fig. 4 for angular
dependence on #) and nonzero over the green line for Bell-init
data (see Fig. 3 for angular dependence on #). The whole domain
of numerical evolution is the rectangle delimited by dashed lines
(black and red).

q)(UO' V'B) = m [V - (Vcemer - UV)]4
X [V = (Veenter +”V)]4 X [0 — (Ocenter — 60)]4
X [0 — (Ocenter + ‘70)]4- (89)

In Fig. 3 we have chosen the values V.. = 1.5, 0y = 0.1,
Ocenter = 0.457, and 69 = 0.27. The second initial data type

®(U=-1.000,V,8). Param: m=1.00, a=0.80

0.5
-0.5

o(V,0)
=)

0.5 = — -
35
15 3 0.8
v < -5 2 25
04
0.2
FIG. 3. Plot of Bell-init data, defined by (89), with parameters

Veenter = 1.5, oy = 0.1, and O eper = 0.457.

has the same angular dependence of the spherical harmonic
Y70(6). We call it “Armonic-init data” and it is defined by

V5 e

®(U,,V,0) :A4—(3cosz(9) D[V = (Vienter — &
JT

X [V - (Vcenler + O-V)]“- (90)

In Fig. 4 we have chosen the values V .o = 1.5, 0y = 0.5,
and A = 800.

C. Numerical results

The functional dependence of ®(U,V,0) and the
restriction of three-dimensional plots reduces the informa-
tion that can be shown in one plot. For this reason, it will be
useful to use two complementary plot types.

One of them is ®(U = constant, V, €), which shows the
wave behavior of the scalar field solution as one increment
U; we call it “wave-plot type.” The numerical results with
wave-plot type for both initial data can be seen in Figs. 5
(for Bell-init data) and 7 (for armonic-init data).

The other complementary plot type is ®(U,V,0 =
constant); we call it “causal-plot type.” It means that, for
each angle 0 = constant, we can see the whole causal
evolution over coordinates U, V. The numerical results
with causal-plot type can be seen in Figs. 6 (for Bell-init
data) and 8 (for armonic-init data).

About the numerical evolution results, one can highlight
the smooth behavior across the exterior future horizon H
(U =0=r=r,), as we expected from previous sections
(see Supplemental Material [27]).

D. Q precision test

We have already mentioned that the numeric scheme was
designed to be second-order accurate. Nevertheless, one
can actually verify and test such precision numerically. One
can compute a coefficient test Q. that is related with the
global precision of the numeric code. For this computation,

®(U=-1.000,V,8). Param: m=1.00, a=0.80

T r 0.5
__ 05
T
> 0 0
=
05
4 L 05
- o -1
05 < < TS 4
1 -
v 15 - ) 553 3505
o~ 15
255 05 ! ) 0
05

FIG. 4. Plot of armonic-init data, defined by (90), with
parameters V .er = 1.5, oy = 0.5, and A = 800.
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®(U=-0.500,V,0). Param: m=1.00, a=0.80 ®(U=-0.200,V,8). Param: m=1.00, a=0.80
2 2
2 =1 2 1
—~ 1 —~ 1 |
@ @
> 0 0 > 0 0
& & 4 |
2 -1 2 | -1
. 2 -2
on & 1' ) ’ 05 < — T 1
~&(((( — 3 350
v v 15 S\ 45 2 25 0.8
255 05 ! - 08
0.4
0.2
®(U=0.000,V,0). Param: m=1.00, a=0.80 ®(U=0.200,V,0). Param: m=1.00, a=0.80
2 2
2 = 1 2 | 1
—~ 1 ~ 1 |
Lo} L]
> 0 0 > 0 0
& 4 | & |
2 -1 2 | -1
— -2 ) -2
05 < et . . 05 < e, .
1 > 1= ] - >
v 15 55 3 3%0s v 15 525 3 %05
22508 1 " ° 2 asgus 1 ° o 0
-0.5
®(U=0.500,V,6). Param: m=1.00, a=0.80 ®(U=1.000,V,0). Param: m=1.00, a=0.80
2 2
2 1 2 1
1 ~ 1
o o
> 0 0 > 0 0
& e 4
2 -1 2 -1
_ -2 . -2
05 = . _"“ - 3 05 = —
1.5 55 3 3905 1.5~ 55 3 9915
v 2= - 15 2 0 v 2 i5 2 ° 1
250 05 2579 05 )
0.5 0.5
0
0.5

-1

FIG.5. Numerical evolution of Bell-init data. Each plot shows ®(U = constant, V,#) (wave-plot type). The numerical evolution starts
with initial data at U = —1 (see Fig. 3) and evolves up to U = 1. It can be seen that the behavior across the exterior future horizon H
(U =0=r,) is clearly smooth, as we expected based on previous and detailed analysis. One can also see the nontrivial angular
dependence with respect to 6. Kerr parameters a = 0.8, m = 1.
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®(U,V,6=0). Param: m=1.00, a=0.80 ®(U,V,0=1v5). Param: m=1.00, a=0.80
2 2
2 \ 2
s ios \ K
S 0 S o ‘
e 1 0 e 1 0
2 2
-1 -1
1 A\ 2 1 2
05 0.5
] — 2 U 0 1
0.5\ = 1 -0.5 — 05
- . 0 - 5 2 0
'os 1 1 'os 1 18
v Vv
®(U,V,0=21/5). Param: m=1.00, a=0.80 ®(U,V,0=31/5). Param: m=1.00, a=0.80
2 2
2 2
s 1 1 S 1 _ IR
=) 0 =) 0
© 1 o o 1 0
2 2
1 1
-2 -2
0.5
U 1 1
05" 2 0.5 0.5 A 08
_ 5 25 0o — _ —— 2 25 0.6
Tos ! e 05 Tos ! ' 0.4
v v 0.2
®(U,V,0=41/5). Param: m=1.00, a=0.80 ®(U,V,6=n). Param: m=1.00, a=0.80
2 2
2 2 -\
s ! s ! 1
> o =)
@ 1 o ° 1 0
2 2
-1 -1
1 2 1 2
0.5 0.5 -
U gi U 0 : -\ 1.?
-0.5 = ——a, -0.5 ==\
'\ — 25 02 A\ 2 25 05
1 05 1 15 0 1 05 1 1.5 0
v v -0.5

FIG. 6. Numerical evolution of Bell-init data. Each plot shows ® (U, V, # = constant) (causal-plot type). The numerical evolution
starts with initial data at U = —1 (see Fig. 3) and evolves up to U = 1. It can be seen that the behavior across the exterior future horizon
Hy (U= 0=r,) is clearly smooth, as we expected based on previous and detailed analysis. In this case, one gets the whole causal
picture in terms of U, V coordinates, but at fixed values of #. Kerr parameters a = 0.8, m = 1.
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®(U=-0.500,V,0). Param: m=1.00, a=0.80 ®(U=-0.200,V,8). Param: m=1.00, a=0.80
2 2
2 =1 1
g | - 8
> 0 0 > 0
= =
1 !
2 -1 -1
_— — 2 — 2
05 < , T~ 05 < i .
v ST T~ 5 2 25 3 9705 v WIS T 453 25 3 3%0s
26 05 ' ) 0 255 05 ' ) 0
0.5 -0.5
®(U=0.000,V,0). Param: m=1.00, a=0.80 ®(U=0.200,V,0). Param: m=1.00, a=0.80
2 2
1 2 | 1
— 1
-] -]
> 0 > 0 0
5 s L
-1 2 | -1
- TN 2 . 2
05 - : : T 1 05 < . - S .
T = -3 3.5 T ; ~—-235
v 15~ S< 5 2 25 3 9905 v 1.5 2 — 2 25 3 3905
2575 05 ' ) 0 255 08 1 o 0
0.5 0.5
-1 1
®(U=0.500,V,08). Param: m=1.00, a=0.80 ®(U=1.000,V,8). Param: m=1.00, a=0.80
2 2
2 - 1 2 1
s ! s !
> 0 0 > 0 0
* 4 ® 4
2 -1 2 -1
-2 -2
05 ‘—’”1 : - —':”’; —C e > ~ . 1 05 (771 ‘,_ - jx_:i,-- - *’ 7 . > 1.5
v 1.5 > — 15 5 25 3 0.5 v 1.5 2= — 15 2 25 3 !
257 05 0 259 05 ) 0.5
0.5 0
1 -0.5
-15 -1
-2 -1.5

FIG. 7. Numerical evolution of armonic-init data. Each plot shows ®(U = constant, V, #) (wave-plot type). The numerical evolution
starts with initial data at U = —1 (see Fig. 3) and evolves up to U = 1. It can be seen that the behavior across the exterior future horizon
Hy (U = 0= r,) is clearly smooth, as we expected based on previous and detailed analysis. One can also see the nontrivial angular
dependence with respect to €. Kerr parameters a = 0.8, m = 1.
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®(U,V,0=0). Param: m=1.00, a=0.80 ®(U,V,0=11/5). Param: m=1.00, a=0.80
2
2 -
s s !
2 2 o
- " B 1
2
-1
1 NAN 2
0.5\ 0.5
u 0} ! u 0 \
-0.5 U\ 0 — 0.5 U\
AN e R 25 1 AN 2 25
0.5 1 : 2 0.5 1 '
Y v
®(U,V,0=21v5). Param: m=1.00, a=0.80 ®(U,V,0=31/5). Param: m=1.00, a=0.80
2 2
2 2
s ! 1 s 1
=} 0 =} 0
@ -1 0 @ -1 0
2 2
-1 -1
-2 2
u b U 0" \ 0.5
0.5 ¢ BN 0 0.5 ¢ . 0
- Nt 2 . -0.5 -~ N 2 1 -0.5
105 1 1.5 155 - 15
\ v
®(U,V,0=41/5). Param: m=1.00, a=0.80 ®(U,V,0=m). Param: m=1.00, a=0.80
2 2
2 2
s ! s ] !
=} 0 S 0
- 1 o s 1 0
2 2
-4 -1
-2 -2
0.5 -
u : U !
08 — 25 : 08 — 25 ;
— s 2 -0.5 . T 2 . 1
o5 1 1.5 15% - 15 !
\ v

FIG. 8. Numerical evolution of armonic-init data. Each plot shows ®(U, V, # = constant) (causal-plot type). The numerical evolution
starts with initial data at U = —1 (see Fig. 3) and evolves up to U = 1. It can be seen that the behavior across the exterior future horizon
Hy (U= 0=r,)is clearly smooth, as we expected based on previous and detailed analysis. In this case, one gets the whole causal
picture in terms of U, V coordinates, but at fixed values of #. Kerr parameters a = 0.8, m = 1.
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one needs the numerical solutions with grid spacing h.g
and %‘, where h = hy = hy. Then,

_ JE [ ®(h, hg) — DG, hy)Pd6

i@ hy) — @ hg)Pdo

Qeest(U, V) 2r, (91

where p is the precision order of the code; it means that the
global error is O(h)?.

We have computed Qe in the whole domain U, V, for
the numerical evolution of each initial data. In all cases, it
was obtained that Q.4 ~ 4, which means that the numerical
scheme and the implemented numeric code is second-order
accurate with global error O(h?). This result was expected
by numerical scheme design (45). The numeric computa-
tion of Qg is shown in Figs. 9 (for Bell-init data) and 10
(for armonic-init data).

E. Energy conservation test

The massless scalar field equation can also be written as

Vaev o =0, (92)
Qyest(U,V). Param: m=1.00, a=0.80 7
6.5
7 —
6
s 6 55
2
g ° 5
G 4 45
3 4
35
4 e . ~_ 3
05=_ >
U 0 0\5 - *‘2*“¥?.5

o5 T % v
FIG. 9. Plot of precision test Q(U, V) for Bell-init data.

Qest(U,V). Param: m=1.00, a=0.80 7

Qrest(U.V)
w e (4] [} ~
T
[

FIG. 10. Plot of precision test Q.o (U, V) for armonic-init data.

where its related energy-momentum tensor is
1
Tab = V,,(IJV,,CD - Ega,,VCd)V‘d). (93)

From (92) and (93) it is straightforward to show that
v, 1%, =0, (94)

which allows one to define a conserved quantity. If one uses
a Killing vector &, the next result follows:

Va(Tabgb) = (vaTab)fb + Tabvagb = 0’ (95)

where the first term of Eq. (95) is zero because of Eq. (94)
and the second term is zero because of the symmetry
(T'yp = Tp,) together with the Killing vector property
(V&% +V,&% =0). As usual, one can define a related
current for this conservation law,

Jé = To, b, (96)

The application of Stokes’ theorem to this case, for a region
V bounded by the future hypersurface Sy = U U V¢ and
the past hypersurface S, = U, UV, can be expressed as

V,JedV = / L0 e (adudvdody)
% %

Vy
_ /V (1 V/3),, dvdody

P

U
+ / " (1¥y/3g),, dUd6dy
U f

P

v
- / " (IVg),, dvdody
v, r

- / v (1Y/g),, dUdOdgp = 0. (97)
U P

P

Then one can define a future and past energy
Vi
E¢ z/ (JU\/_E)lu dVdOde
v, s

Uy
+/ (.IV\/E)lvidUde(p, (98)

P

Vs
- /V (4 /3),,, dvdody
Uy
+ / (1Y \/3),, dUdody. (99)
u, g

Note that, from (97), both quantities must be conserved,
which means they must have the same value.
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In this work we will use the Killing vector

g\t J 0\?

which allows one to obtain explicit expressions for JV and
JV, namely,

U =T%¢(dU), =T, &

P! 2
=K [VgUV (H/ <I>)

0 0
vo Vo
+ (Vg" + Ug )<8V¢'> ((904))

+1U</’0 9 ’ (101)
277 \oe ’
IV =T%E(dV), = TV &
uv (9 2
= —K, [U_q (—aU(I))
d 0
(] \
+(Vg¥ + Ug )(—(,wcb)(aocb)
+1Vq”9 —acb ’ (102)
27 \oe :

In the numerical evolution, the limits of V domain has fixed
values, where V, =V, =0.5 and Vy =V, =25 [see
Eq. (80)]. Then, during the numerical evolution, for each
step in U, we can compute E, and Ey, which is naturally
adapted to the double null numerical scheme. Therefore,
the relative variation of the conserved energy can be
computed numerically as

E;(U) - E,(U)

E,U) 7 (10)

grelative =

where each one of E,(U) and E;(U) are integrated over
different hypersurfaces. In the conformal spacetime diagram,
those different hypersurfaces look like different pair sides in
the rectangle domain. For example, in Fig. 11 it is shown the
regions where E,,(U) (red lines) and E¢(U) (violet lines) are
computed, for two cases: U = —0.5 and U = 0.5.

The main importance of the conserved energy is to provide
a totally independent way to measure the quality of the
numeric evolution, in the sense that it is very sensible to any
departure from the original scalar field equation. The results
of energy conservation for each initial data type are shown in
Figs. 12 and 13. In one case the variation was less than
0.003% and in the other the energy variation is less than
0.005%. This means that the scalar field behavior revealed in
our numerical solutions is highly reliable and accurate.

It is worthwhile to note that iy and hy do not have units.
Then, the natural question might be “is our grid small or big?”

FIG. 11. Conformal diagram of Kerr spacetime in c.m. double
null coordinates. Red lines show the region where past energy
E,(U) is computed, and violet lines shows where future energy
E¢(U) is computed. Two cases are shown: U = —0.5and U = 0.5.

Or, in other words, is it a low or high resolution grid? To
clarify this, we observe here the relation between these two
coordinates close to the horizon. Let us see that in the chosen
grid the starting point U = —1 corresponds to u = 0, but
after 148 steps, one has U4 = —0.01333 which corre-
sponds to uy4g3 = 23.026, which has the same units as m.
Then, the next step is 149, which brings us to Uy =
—0.0066 and 149 = 26.723; whereas the horizon is reached
at the 150th step with U;59 = 0.0 and u,59 = oo. If we were
to take a new grid with half the value of Ay, we would be
dealing with 600 intervals, and the exercise above would now
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0.015 T T I T T T T
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Erelative

0 — .
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U

FIG. 12. Relative energy variation given by Eq. (103) for
numerical evolution of Bell-init data. Note that the variation is
less than 0.003%.
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FIG. 13. Relative energy variation given by Eq. (103) for
numerical evolution of armonic-init data. Note that the variation
is less than 0.005%.

be concerned with the corresponding values near the horizon
given by uygg = 26.723, upg99 = 30.420, and u3py = 0. So,
one can see that, due to the logarithmic relation between u
and U, even when one decreases the interval i, linearly, one
still finds big intervals in « and the final inevitable infinite
interval just before reaching the horizon. This tells us that the
convenient geometrical coordinate U, which allows us to
cross the horizon smoothly, always generates a coarse, low
resolution grid, close to the horizon in the asymptotic region,
where an increment in « can be associated with asymptotic
retarded time. For this reason, one has to choose very
carefully the appropriate null coordinates, depending on
the objectives of the calculation.

As far as we know, there is no precedent in literature of
this type of calculation in double null coordinates for Kerr
spacetime.

Our understanding of the small variations in Figs. 12 and
13 is that they reflect the limitation of using a second-order
evolution scheme. In further works, this can be improved by
the use of other numerical methods to manage the angular
derivatives with more sophisticated techniques. Nevertheless,

the results of this work clearly show the feasibility of solving
the scalar field equation in double null coordinates.

VI. FINAL COMMENTS

This is the first time that a double null coordinate system
was used to solve the scalar field equation in Kerr
spacetime. The results provide a clear example of how
useful the c.m. double null coordinate system can be, which
is well behaved throughout the spacetime including the axis
of symmetry, unlike previous attempts in the literature
[19-22]. The numerical scheme and code development
clearly establish the feasibility of solving these types of
equations with nontrivial angular dependence at second-
order precision in grid spacing, that is, with a global error of
the order O[h*]. Such precision follows from design;
nevertheless, it was also tested numerically, obtaining full
consistent results.

Among the advantages of null-null decomposition
(2 + 2), we find that they allow a direct causal interpre-
tation, which is more useful when evolving toward the
horizon H f and interior regions. On the other hand, it
reduces the complexity of differential equations. In the
spatial-temporal decomposition (3 + 1), one has to deal
with second-order derivatives in time and space; meanwhile
in null-null decomposition (2 +2), one only has first
derivatives with respect to each null coordinate.

In this work we have shown that the scalar field equation is
well behaved across future and past exterior event horizons
H ¢ and H ,, from a fundamental analytical point of view. We
have also shown that numerical solutions are well behaved
across the future exterior horizon H > a8 wWe expected.

The numerical result’s fidelity was tested with an
independent procedure of energy conservation. The energy
variation was less than 0.003% in one case and less than
0.005% in the other, which manifest the reliability and
accuracy of the numerical evolution.

The study of the solutions of the scalar field equation
allows us to tackle the principal part of the Teukolsky
equation [1], which can be used to describe possible linear
perturbations of Kerr spacetime. Therefore, this work can
be extended to the study of linear perturbations of spin
weight 1 (electromagnetic field) and 2 (gravitational
waves), opening a new avenue for Kerr stability studies
in double null coordinates. We plan to work on these kinds
of linear perturbations in future works.
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