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Abstract
We present the first explicit global conformal diagram of Kerr spacetime and
discuss some implications on the causal structure. For this construction we
use a new double null coordinate system for Kerr spacetime, which we have
recently presented. These null coordinates are smooth everywhere and are
naturally adapted to the horizons and to the null infinities. In this setting there
naturally appears a family of spheres that are parameterized by rs, which are the
intersections of both null coordinates, and rs can be thought of as the extension
of the tortoise coordinate for the Kerr spacetime.
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1. Introduction

The formation of a black hole is normally thought of as the result of the collapse of a previous
system. All observed compact objects have angular momentum; so that it is expected that any
possible collapse to a black hole state will include some final angular momentum. Then, since
the stationary axisymetric vacuum solution of the Hilbert–Einstein equations with angular
momentum is the Kerr geometry [1]; it is natural to think of this metric as one of the most
important in the study of general relativity.

Very recently these geometries have also acquired observational importance, since the direct
observation of gravitational waves [2, 3]. Most of the observations correspond to binary black
hole systems, whose final state is supposed to be represented by a remaining black hole with
angular momentum. For this reason the Kerr metric becomes of relevance in this framework;
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since perturbations of this geometry could be used to describe the late time behavior of those
systems.

The recent presentation of the first image ever generated [4] of a black hole is also related
to this geometry. At the time of writing the Event Horizon Telescope (EHT) Collaboration has
presented a second image, in this case of the supermassive black hole in the center of our own
galaxy [5]. The models employed by the EHT Collaboration to create the image make use of
this geometry, as also do other approaches to construct these type of images [6].

To have a deep physical understanding of a spacetime, it is crucial to know its causal struc-
ture. The use of null coordinates together with conformal diagrams was very useful tools for
these purposes. They help to understand the nature of black holes horizons and are widely used
in a variety of studies.

In spherically symmetric spacetimes, it is natural to consider diagrams in which each point
corresponds to one of the spheres of symmetries, leading to the usual causal diagrams of the
spacetime, as for example those presented in [7]. For the Schwarzschild case the use of the
tortoise coordinate given by r∗ = r+ 2m ln( r

2m − 1) was useful.
For a black hole with angular momentum, the situation is much more delicate. In the sixties

Carter [8] was able to study in detail the ‘complete analytic extension of the symmetry axis of
Kerr spacetime’, and he presented the now celebrated conformal diagram at the symmetry axis
of this spacetime. These type of diagrams are also reproduced in classic textbooks [9]. At the
end of his article Carter conjectured that it was ‘probable that the basic topological properties
of the 4-dimensional manifold’ were essentially the same. Yet, before the present article, there
were no publications of an explicit construction of global conformal diagrams of a black hole
with angular momentum. In many articles and presentations, Carter diagrams are used as if the
Carter conjecture where true without presenting any argument for its support. The conformal
diagram we are presenting in this article is then a useful tool to tackle questions as the above
Carter conjecture; which we explore later in this work.

Two dimensional conformal, and therefore causal, diagrams are a very useful tool for visu-
alizing the structure of the spacetime. Could one extend the usual two dimensional conformal
diagrams of Schwarzschild geometry, based on Kruskal coordinates, to the case of a black
hole with angular momentum? Yes, fortunately, we have recently constructed a pair of null
coordinates that allows us to extend those techniques to the Kerr geometry.

The term ‘conformal diagram’ can be given slightly different meanings; in particular it
is rather easy to construct a conformal diagram out of a static 2-dimensional Lorentzian
spacetime [10], since one can readily find a pair of null functions. Then in particular one
could compactify the spacetime to obtain a conformal diagram of it. But in our case we use
the denomination ‘conformal diagram’ in a 4-dimensional sense; that is, one is hoping that
generic points in the 4-dimensional spacetime can be represented in the conformal diagram. In
order to fix the discussion we define: global conformal diagrams of a 4-dimensional spacetime
as 2-dimensional graphs, in which lines at 45◦ represent constant null functions, and generic
points of the spacetime can be mapped through a mathematical function to the 2-dimensional
graphs. It is then customary to use compactifications so that infinities can also be drawn in
these diagrams. Typical examples of diagrams that embody this definition are the graphs (i)
and (ii) of figure 24 of Hawking and Ellis textbook [11]. Instead, the graphs shown in the same
reference in figure 28, for Kerr spacetime, do not classify as ‘global conformal diagrams’ since
they refer to specific points along the axis of symmetry. In this work we provide for the first
time an explicit construction of global conformal diagrams of Kerr spacetime.

A natural question that arises is whether the conformal diagrams that we present in this
article provide any advantage for the analysis of the images of the observed black holes,
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the answer to which needs for some explanation. To begin with, the standard representa-
tion one has in mind as the source for the astrophysical system that generates the images
that EHT Collaboration have published, is that surrounding material close to the black holes
emits electromagnetic radiation that is captured by the radiotelescopes. That is, all the phys-
ical observed system is thought to be located outside the event horizon. From this point of
view then our contribution would not add to the known structure, outside the horizon, of black
holes with angular momentum. A second representation that one could consider is to include
the possibility that the astrophysical black hole has also a past event horizon, and that null
geodesics could reach us from past regions of this horizon. In this case, our construction could
help in analyzing the behavior of those geodesics, by providing the opportunity to depict them
in our diagrams. Nonetheless, the general belief is that astrophysical black holes are always
in the presence of surrounding material that would complicate this picture in several ways;
inducing us to take the first standard representation, considered above, as the realistic one.

Note that one of the great benefits of the construction presented here is that now one can eas-
ily make any computation across the event horizon and the Cauchy horizon, either for particles
or fields. This contributes on the physical studies in a broad spectrum of topics and results.

We use the standard notation for regions of type I, II and III to correspond respectively to
the situations [8] r> r+, r+ > r> r− and r− > r.

We will show below that the noncausal zone in region III cannot be represented in global
conformal diagrams. We can only draw its boundary. Throughout this work we assume the
standard situation a2 < m2; where the geometric parameters are defined below in the metric.

In what followswe present the basic tools that are used to construct themost general explicit
conformal diagram of a black hole with angular momentum. In section 2 we review the basic
geometry and definition of a pair of null coordinates, that are adapted to the horizons. The
null coordinates in regions II and III are presented in section 3. In section 4 we recall the
conformal diagram at the axis of symmetry. With our construction, we are able in section 5
to present a numerically generated graph of three timelike curves in a conformal diagram. In
section 6 we present graphs that depict the boundary of the noncausal region in Kerr spacetime.
The conformal diagram of regions I, II and III is discussed in section 7 . An ending section is
devoted to final comments.

2. The Kerr geometry

2.1. The basic pair of null coordinates

The Kerr metric in terms of Boyer–Lindquist [12] coordinates can be expressed as:

ds2 = (1−Φ)dt2 + 2Φasin2(θ)dtdϕ− Σ

∆
dr2 −Σdθ2

−
(
r2 + a2 +Φa2 sin2(θ)

)
sin2(θ)dϕ2; (1)

with inverse: (
∂

∂s

)2

=
Υ

Σ∆

(
∂

∂t

)2

+
4amr
Σ∆

(
∂

∂t

)(
∂

∂ϕ

)
− ∆

Σ

(
∂

∂r

)2

− 1
Σ

(
∂

∂θ

)2

− ∆− a2 sin2(θ)

Σ∆sin2(θ)

(
∂

∂ϕ

)2

, (2)

where

Σ= r2 + a2 cos2(θ), ∆= r2 + a2 − 2mr, Υ=
(
r2 + a2

)2
−∆a2 sin2(θ), Φ=

2mr
Σ

, (3)
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and where m denotes de mass while the angular momentum of the black holes is given by
J= am. In their work, Boyer and Lindquist were able to study the analytic extensions of the
Kerr geometry.

Let us note for future reference that:

gϕϕ =−
(
r2 + a2 +Φa2 sin2(θ)

)
sin2(θ) =−Υ

Σ
sin2(θ), (4)

that is, this component of the metric is proportional to Υ; which we will study below.
To build the outgoing congruence we make use of the Carter constant K on each geodesic,

which in our construction becomes a function of the coordinates (r,θ). But often, it is useful
to refer instead to a related scalar that we call k(r,θ) and is defined by:

K(r,θ) = a2 sin(θ)2 + k2(r,θ). (5)

The details for the construction of the null congruence and the definition of the null coordinates
are given in [13]; we here just recall some of the most important equations. These auxiliary
scalars must satisfy the equation:√

(r2 + a2)2 −K∆
∂K
∂r

± |h
√
K−

(
asin(θ)

)2 ∂K
∂θ

= 0, (6)

with boundary condition:

lim
r→∞

K= a2 sin(θ∞)2, (7)

where θ∞ is the value of the coordinate θ at future null infinity; or equivalently:

∂k
∂ξ

=
a2 sin(θ)cos(θ)+ k ∂k

∂θ√
(1+ ξ2a2)2 − ξ4∆

(
a2 sin(θ)2 + k2

) , (8)

where

ξ =
1
r
, (9)

with boundary condition

lim
ξ→0

k= 0, (10)

and we are assuming k> 0 in the northern hemisphere [13].
In our previous work [13] we have presented a pair of null functions that are smooth every-

where and therefore can be used as coordinates for the spacetime. Moreover, they are adapted
to the horizons, as we will review here. These null functions were constructed in terms of par-
ticular congruences of null geodesics. We defined the outgoing congruence to be orthogonal to
the center of mass sections [14, 15] at future null infinity. This construction has the advantage
that it can be generalized to spacetimes, which are not exactly Kerr, but instead a perturbed
spacetime that is decaying to a remaining black hole with angular momentum.

One can express the integral form of these functions in several ways [13], and we choose:

u(t,r,θ,ϕ) = t− r−

(
2mr+
r+ − r−

ln

(
r
r+

− 1

)
− 2mr−
r+ − r−

ln

(
r
r−

− 1

))
−
ˆ θ

0
k(r,θ ′) dθ ′. (11)

And for the other function we choose:

v(t,r,θ,ϕ) = t+ r+

(
2mr+
r+ − r−

ln

(
r
r+

− 1

)
− 2mr−
r+ − r−

ln

(
r
r−

− 1

))
+

ˆ θ

0
k(r,θ ′) dθ ′. (12)
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Starting from the metric in Boyer–Lindquist coordinates (1), and expressing it in terms of the center
of mass null coordinates, one obtains:

dt=
dv+ du

2
, (13)

dr=

[
(dv− du)

2
− kdθ

]
∆√
R
. (14)

where R= (r2 + a2)2 −K∆; from which, the metric is expressed as:

ds2 =
1
4

(
1− 2mr

Σ
− Σ∆

R

)(
du2 + dv2

)
+

1
2

(
1− 2mr

Σ
+

Σ∆

R

)
dudv

+ dv

(
2amrsin2(θ)

Σ
dϕ+

Σ∆

R kdθ

)
+ du

(
2amrsin2(θ)

Σ
dϕ− Σ∆

R kdθ

)
− ΥΣ

R dθ2 − Υ

Σ
sin2(θ) dϕ2. (15)

Similarly, the inverse metric can be expressed as:(
∂

∂s

)2

= 4
Υ

Σ∆

(
∂

∂u

)(
∂

∂v

)
− 1

Σ

(
∂

∂θ

)2

+ 2

(
∂

∂u

)[
2amr
Σ∆

(
∂

∂ϕ

)
+
k
Σ

(
∂

∂θ

)]
+ 2

(
∂

∂v

)[
2amr
Σ∆

(
∂

∂ϕ

)
− k

Σ

(
∂

∂θ

)]
− ∆− a2 sin2(θ)

Σ∆sin2(θ)

(
∂

∂ϕ

)2

. (16)

It is easy to verify that ℓa ≡ (du)a and na ≡ (dv)a are null forms, which is consistent with our
definition. We occasionally use Latin letters in this article to denote abstract indices.

2.2. Regular coordinates at the horizon

From observing the variation of the derivative of the Boyer–Lindquist coordinate ϕ with respect to the
affine parameter [13] λ, one finds that ϕ has a divergent behavior as the horizon is approached. In order
to avoid this bad behavior we choose to define:

dφ±pf = dϕ−±pf
a
∆
dr, (17)

which has an integral expression given by:

φ±pf = ϕ−±pf
a

2
√
m2 − a2

ln

∣∣∣∣ r− r+
r− r−

∣∣∣∣; (18)

where we are using the notation (±pf =+) for the choice p and (±pf =−) for the choice f. That is, φ+

is well behaved as one approaches the past horizon Hp, and φ− is well behaved as one approaches the
future horizon Hf .

It can be proved [13] that the function U=−exp(−κu) is well behaved across the future horizon
Hf when: κ= κ+, where

κ+ =
(r+ − r−)
2(r2+ + a2)

=

√
m2 − a2

2mr+
, (19)

which is customary referred to as the surface gravity of the black hole. In particular one can see that,
near the horizon one hasU∝∆; where the proportionality factors are smooth functions on the horizon.
In order to have a double null system that is smooth across the outer past event horizon we also define
the null function V in a similar way; so that we have:

U=−exp(−κ+u), (20)
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and

V= exp(κ+v). (21)

Up to now,we have been studying the asymptotic behavior approaching the horizon from the outside
region where λ < λ+. In the inner region, U> 0 and one should use the relation:

U= exp(κ+uII), (22)

where uII is the analogous inner version of the null coordinate u in the outer region.
Then, the metric becomes:

ds2 =
1
4

(
1− 2mr

Σ
− Υa2 sin2(θ)+Σ2∆

ΣR −
±pf 4mra2 sin2(θ)

Σ
√
R

)
1

κ2U2 dU
2

+
1
4

(
1− 2mr

Σ
− Υa2 sin2(θ)+Σ2∆

ΣR ±pf
4mra2 sin2(θ)

Σ
√
R

)
1

κ2V2 dV
2

− 1
2

(
1− 2mr

Σ
+

Υa2 sin2(θ)+Σ2∆

ΣR

)
1

κ2UV
dUdV

+

[(
Υa2sin2(θ)+∆Σ2)

ΣR ±pf
2mra2sin2(θ)

Σ
√
R

]
k
κU

dUdθ

+

[(
Υa2sin2(θ)+∆Σ2)

ΣR −
±pf 2mra2sin2(θ)

Σ
√
R

]
k
κV

dVdθ

−
(
2amrsin2(θ)

Σ
±pf

Υasin2(θ)

Σ
√
R

)
1
κU

dUdφ

+

(
2amrsin2(θ)

Σ
−±pf

Υasin2(θ)

Σ
√
R

)
1
κV

dVdφ

−

[
Σ+

k2
(
Υa2 sin2(θ)+Σ2∆

)
ΣR

]
dθ2

±pf
2Υasin2(θ)

Σ
√
R

k dθ dφ− Υ

Σ
sin2(θ) dφ2, (23)

where one has to consider κ= κ+ and we are using the new angular coordinate φ.
The inverse metric can be expressed as:(

∂

∂s

)2

= − 4κ2 Υ

Σ∆
UV

(
∂

∂U

)(
∂

∂V

)
− 2κk

Σ

[
U

(
∂

∂U

)
+V

(
∂

∂V

)](
∂

∂θ

)
− 2κaU

Σ∆

(
2mr−±pf

√
R
)( ∂

∂U

)(
∂

∂φ

)
+

2κaV
Σ∆

(
2mr±pf

√
R
)

×
(
∂

∂V

)(
∂

∂φ

)
− 1

Σ

(
∂

∂θ

)2

− 1

Σsin2(θ)

(
∂

∂φ

)2

, (24)

where κ= κ+.
The determinant of the metric is given by:

g=−∆2Σ2 sin(θ)2

4κ4RU2V2 . (25)

The future outer horizon Hf is reached following the incoming null geodesic congruence while the
past outer horizon Hp is reached following the outgoing null geodesic congruence but to the past. The
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behavior ofU and V near the horizon can be seen from the expression of the product of both functions,
since one has:

UV=
− e2κ+(r+

´ θ
0
k(r,θ ′)dθ ′) (r−)

r−
r+

(r+)(r− r−)
r++r−

r+

∆. (26)

From the definition of both functions, one can see that U≈∆ at the future outer horizon Hf and
V≈∆ at the past outer horizon Hp.

Let us notice that each one-form dta and dra (normal to a surface t=constant, r=constant respect-
ively) changes its causal character between region I and II, as we can see from their norms:

gabdtadtb =
Υ

Σ∆
, (27)

gabdradrb =−∆

Σ
. (28)

In region I where ∆> 0, we have that dta is timelike and dra spacelike. In region II where ∆< 0,
we have that dta changes to spacelike and dra changes to timelike. In region III where∆> 0, we have
a similar situation as in region I.

One can see that something similar happens with:

(drs)a =

√
R
∆

dra+ kdθa, (29)

which norm is:

gab (drs)a (drs)b =− Υ

Σ∆
, (30)

so that drs is spacelike in region I where ∆> 0, and becomes temporal in region II where ∆< 0. In
order to keep the same causal meaning of the null functions u,v, we need to define new ones. There
are several reasons that induce us to define the new coordinate rs. The function rs is the analog to the
tortoise coordinate in Schwarzschild spacetime. These can be seen, as it already appears in the integral
form of the coordinates u and v, in equations (11) and (12). It has the meaning of a function that is
constant on the 2-surfaces that are the intersections of the hypersurfaces u=constant and v=constant.
These 2-surfaces are topologically spheres, and are the natural closed surfaces that appear in our con-
struction of the double null coordinate system. The coordinate rs also has the convenient property that
is constant in each point of the conformal diagrams we are presenting in this article. Note that, as we
have explained in [13], rs can explicitly be given in the exterior region by:

rs(r,θ) =r+
2mr+
r+ − r−

ln

(
r
r+

− 1

)
− 2mr−
r+ − r−

ln

(
r
r−

− 1

)
+

ˆ θ

0
k(r,θ ′) dθ ′. (31)

This equation shows the relation between rs with the standard Boyer–Lindquist coordinates (r,θ).
If we call rKS the Kerr–Schild radial coordinate, that is, r2KS = x2KS + y2KS + z2KS; then, we have to recall
that r4 − (r2KS − a2)r2 − a2z2KS = 0. Therefore, one could replace above the appearance of r with the
corresponding functional relation r(rKS,zKS), to find the relation of rs in terms of the radial Kerr–Schild
coordinate. To have a qualitative comparison of the surfaces rs =const., r=const. and rKS =const. we
have made the graph shown in figure 1; where we can see that for these parameters, the rs =const. is
located between the other two. We have emphasized the Kerr coordinate3 r with the notation r= rKerr
in this graph. Whenever necessary, to make an explicit numerical calculation, we assume m= 1 and
a= 0.8. We have chosen the value of r to triple the mass, which taking into account that for our choice
of parameters r+ = 1.6 m, one can see that it is smaller than double the value of r+.

3 Although r is normally understood as the radial Boyer–Lindquist coordinate, it already appeared in the original
paper [16] of Kerr.
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Figure 1. Comparison of different radial functions maintained constant, with respect to
Kerr-Shild coordinates.

Before continuing with the other regions let us also note that dv= du+ 2drs, so that, for example,
the Kerr metric in the (u,rs,θ,ϕ) coordinate system, can be obtained from (15) by this replacement;
namely

ds2 = (1−Φ)du2 + 2(1−Φ)dudrs+ 2asin2(θ)Φdudϕ+

(
1−Φ− Σ∆

R

)
dr2s + 2k

Σ∆

R drs dθ

+ 2asin2(θ)Φdrs dϕ−
ΥΣ

R dθ2 −
(
r2 + a2 + a2 sin2(θ)Φ

)
sin2(θ) dϕ2. (32)

It is probably worthwhile to point out that the grsrs component of the metric is not identical to
zero; while if one were to write the Schwarzschild metric in the corresponding coordinates (u,rT,θ,ϕ),
where rT is the tortoise coordinate, one would obtain grTrT = 0. The point is that in Schwarzschild case,
demanding du= 0, dθ = 0 and dϕ= 0, characterizes outgoing null geodesics; but in Kerr spacetime
this is not the case, so that an increment of rs, maintaining the other three coordinates constant, provokes
a motion on the null hypersurface u=constant, but not along a null direction.

3. Null coordinates in regions II and III

To understand how to define smooth functions at the Cauchy horizons, let us study the behavior of the
null functions in a neighborhood of CR and of CL (See figure 2). We will begin with the study of vII in
a neighborhood of CR, along the null geodesics contained in the congruence uII =constant.

One can see that in region II dtII plays the role of a spacelike one form, while drs has the role of a
timelike one form that grows towards r− in the causal diagram 2. So that the relations between the null
functions uII and vII with the interior Boyer–Lindquist coordinate system (tII,r,θ,ϕII) is given by:

duII =− dtII+ drs =−dtII+

√
R
∆

dr+ kdθ, (33)

where we are using drs as given by (29) and:

dvII =dtII+ drs = dtII+

√
R
∆

dr+ kdθ, (34)
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so that in the causal (uII,vII) diagram of region II, one also has that uII increases to the upper left and
vII increases to the upper right.

It is useful to remark that in order to obtain the metric in the {uII,vII,θ,ϕ} coordinate system one
has to replace in (15): (du→−duII) and (dv→ dvII).

We can now proceed with the main purpose of this part, which is to define a regular function Ṽ in
the vicinity of the Cauchy horizon CR (r= r−). Let us start by studying the behavior of vII along the
null geodesics contained in the congruence uII =constant, which is determined by:

v̇II =2

√
R
∆

ṙ+ 2k θ̇ =−2
R
∆Σ

− 2
k2

Σ
. (35)

Note that in this congruence one has that ṙ=−
√
R
Σ

and θ̇ =− k
Σ
.

To see the behavior of the first term as a function of the affine parameter λ, let us recall that at the
Cauchy horizon CR one has −Σ(r−,θ)dr√

R(r−)
= dλ; so that, approaching the Cauchy horizon CR in region

II, to first order one has:

∆=(r− r+)(r− r−) =

√
R(r−)

Σ(r−,θ)
(λ−λ−)(r+ − r−)+O((λ−λ−)

2), (36)

with λ < λ−. Then, the integration of the divergent term of (35), close to the Cauchy horizon CR, is:

−2
(r2− + a2)2

∆Σ(r−,θ)
dλ=−2

(r2− + a2)2

(r+ − r−)
√

R(r−)

dλ
(λ−λ−)

=−2
(r2− + a2)
(r+ − r−)

dλ
(λ−λ−)

=− dλ
κ−(λ−λ−)

, (37)

where

κ− =
(r+ − r−)

2
√

R(r−)
=

(r+ − r−)
2(r2− + a2)

=

√
m2 − a2

2mr−
, (38)

which we call κ− because of its analogy with κ+. This means that in this asymptotic region one has
v≊ −1

κ−
ln(λ− −λ). So that the function that cures this logarithmic behavior must be an exponential;

for this reason we define:

Ṽ=−exp(−κ− vII), (39)

which by construction, satisfies, as one approaches the Cauchy horizon CR, along the null geodesics
contained in the null congruence U=constant, that:

dṼ≈ dλ. (40)

Similarly, we also define:

Ũ=−exp(−κ− uII), (41)

which, for analogous reasons, is a regular null function close the Cauchy horizon CL.
The behavior of uII,vII near r= r− is:

lim
r→r−,v=v0

uII =∞, (42)

lim
r→r−,u=u0

vII =∞, (43)

which is consistent with our definitions (39) and (41).
It is important to remark that with these definitions we obtain the same metric functional expression

as (23) and (24), with the only difference being that in region II, one has to choose (κ= κ−), (±pf =−)
and take an opposite sign in gUIIθ , gUIIφ, gVIIθ and gVIIφ.

9



Class. Quantum Grav. 40 (2023) 075007 M A Argañaraz and O M Moreschi

Note that to cover regions I and II with null functions that are smooth across Hf and CR, one can
use the set (U, Ṽ); which we plan to employ below.

We can define:

Ũcompact = arctan(Ũ), (44)

Ṽcompact = arctan(Ṽ), (45)

and extend the definitions of ψ and ξ, as used by Carter [8], accordingly. In this way we can explicitly
construct a conformal diagram where each point represents a fixed value of the pair (Ũcompact, Ṽcompact)

or equivalently, of the pair (Ũ, Ṽ). It is clear that this technique can be performed in each region.
In region III, each one-form dta and dra, recovers the same causal character as of region I, but with

the difference that r and rs decreases to the right. Therefore, we can use a similar definition:

duIII = dtIII + drs, (46)

dvIII = dtIII − drs. (47)

Then, to build the null tetrad we take ℓIII = duIII, nIII = Σ∆
2Υ dvIII, completing the tetrad in an ana-

logous way, as we did previously; namely, ma
III is tangent to the surfaces rs = constant, and the usual

null tetrad metric conditions are satisfied. In this case, for each surface rs =constant, we also obtain
the same functional expressions of Extrinsic and Gaussian curvature.

It is useful to remark that in order to obtain the metric in the {uIII,vIII,θ,ϕ} coordinate system one
has to replace in (15): (du→ dvIII) and (dv→ duIII).

Note also that the functional expressions of Ũ and Ṽ are good coordinates for region III.

4. Conformal diagram at the axis of symmetry

Let us note that at the axis of symmetry, the right hand side of equation (8) is zero, so that k= 0 and
K= 0 along the axis. Therefore, the calculation of the null functions at the axis is trivial.

Once one has the appropriate definition of the extended coordinates, the causal diagram of figure 2
is straightforward to construct; following the ideas already presented in [8].

In region I, we can take Carter functions ψ = Ucompact +Vcompact and ξ = Vcompact −Ucompact, where
we can define:

Ucompact = arctan(U), (48)

Vcompact = arctan(V). (49)

The conformal diagram shown in figure 2 is constructed by taking (ξ,ψ) as horizontal and vertical
coordinates respectively.

To extend the diagram to future and past regions, one has to deal with the analog coordinates to U
and V so that they are smooth across the corresponding horizons, as we have described.

In the following sections we present conformal diagrams that have meaning away from the axis of
symmetry.

Since the construction of conformal diagrams is rather difficult, some authors have tried other tech-
niques, as in [17]; where they have introduced projection diagrams.

10
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Figure 2. Carter conformal diagram of Kerr spacetime at the axis of symmetry. One can
extend in a natural way this diagram to future and past regions.

5. Global conformal diagram with timelike trajectories

5.1. On global conformal diagrams

We can see then that one of the great benefits of having constructed a double null coordinate system in
Kerr spacetime is that one can now describe its causal structure. Recall that up to now, the conformal
diagrams were well understood only at the axis, namely for θ= 0 or θ = π; as it is depicted in diagram
(a) of figure 1 in [8], or in figure 27 of page 312 in [9], or in figure 2. However, our construction allows
us to extend the validity of those causal diagrams, where now each point represents the intersection
of the null coordinates. For instance, the intersection of the null hypersurface u=const. with the null
hypersurface v=const., determines a particular topological sphere with rs = constant. On these sur-
faces, the radial coordinate r has a small range of variability, but the angular coordinates θ and φ vary
across their whole respective range of [0,π] and [0,2π]. This is why we emphasize the word global in
our conformal diagrams. As an example of the typical small variations of the coordinate r along the
surfaces rs = constant we can observe for instance figure 1. There, one can notice that when reaching
the Equatorial plane, along the rs = constant surface, the r function is a little bit smaller than 3, which
is the value at the axis; and in fact numerically we can calculate that it has the value r= 2.960 at the
Equatorial plane. Using the coordinates U and V that allow us to cross the future horizon H= Hf,
one has the same property; so that we can give general validity to the causal diagrams using these
type of null coordinates. In other words, we can construct conformal diagrams as the one shown in
figure 2, where each point corresponds to particular values of each of the null coordinates. Alternat-
ively, each point represents a topological sphere which could be at one of the horizons with r= r+
or r−, or the sphere has rs =constant; recalling that rs diverges at the horizons, where lim

r→r+
rs =−∞

11
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and lim
r→r−

rs =∞. The set rs =constant, is a 2-dimensional spacelike surface family(in region I), that

corresponds to a well behaved function r(θ) in terms of Boyer–Lindquist coordinates.
Note that the regular function on CR is Ṽ; which therefore can also be used in region III. Then,

since we would like to draw curves that go from region I to region II and also to region III, it is more
convenient to use for all these three regions the definitions:

ψ = Ucompact + Ṽcompact = arctan(U)+ arctan(Ṽ), (50)

and

ξ = Ṽcompact −Ucompact = arctan(Ṽ)− arctan(U). (51)

Then, in this case, the future horizon Hf is characterized by the condition U= 0, or equivalently
the line ψ = ξ, from −π

2 to 0. While the boundary CR is characterized by the line ψ =−ξ, again for ξ
in the range [−π

2 ,0]. The origin is thus set at i+.

5.2. Computing the plot of timelike trajectories in a conformal diagram

In order to show the utility of having an explicit construction of a conformal of Kerr spacetime we
compute here the plot of three timelike curves in such diagram.

The three timelike curves are defined in the following way. The starting point is to consider the
timelike geodesic equations for the coordinates (Ṽ,r,θ,φ); which are a set of first order differential
equations. This set of equations involves the requirement that the curve be timelike. Then, although we
start from the geodesic equations, we transform them in order to generate timelike curves which are
not geodesics. In the equation involving Ṽ, the knowledge of the function K is required; but instead of
this, we use K0 =

(r2+a2)a2 sin(θ)2

(r2+a2 sin(θ)2) , which is the limit of the function K when the mass of the spacetime
is taken to be very small. This provides then for a recipe to calculate a timelike curve which for m ̸= 0
is not a geodesic. Although we require in one of the equations that these curves are timelike, they cease
to be geodesic, because for geodesics one should use K instead of K0, that we employ. The reason to
calculate these timelike trajectories instead of the geodesics, is to facilitate the numerical calculations,
since to attain a reasonable precision in the trajectories would require high accuracy in the calculation
of K along each point used by method of integration as those of Runge–Kutta type. We also compute
U numerically.

Orbit 1 is calculated with Lz = 0.2, E= 1.2 and Kg = δga2 cos(θc)2 +(Easin(θc)− Lz/sin(θc))2

with θc = π
6 and δg = 1 for a timelike curve. Orbit 2 uses the constants above but with E= 0.5. While

orbit 3 is like orbit 2 but with Lz = 0.7. All curves pass through the point: Ṽ= tan(−π
4 ), U= 0, θ = π

4
and φ= 0.

The graph in figure 3 shows the numerically calculated drawing of these three curves in the con-
formal diagram.

We would like to emphasize that the design of these three timelike curves was chosen just because
of numerical convenience. But even so, the calculations demanded some efforts on the fourth order
Runge–Kutta integrators. Thus we tried to extend the range as much as possible. The technique to
select them was to fix a point in the U= 0 surface, that is at the future event horizon; and then to pick
up three initial conditions covering a fast ‘inward’ infall, orbit 1, a normal timelike behavior, orbit 2,
and a fast ‘outward’ also in fall, orbit 3. We call ‘inward’ a motion with increasing U behavior, and
‘outward’ a motion with increasing Ṽ behavior; which in the graphs are approximate motions to the
left and to the right respectively. It can be seen in figure 3 that the timelike trajectory o3 touches the
Cauchy horizon CR; and it actually enters into region III, but far away from the problematic noncausal
zone inside region III. We have tried several initial conditions until we found one whose trajectory
enters region III. One should notice that the spacetime is smooth across CR and that geodesics and
smooth timelike curves, as o3, can cross the Cauchy horizon.
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Figure 3. Conformal diagram showing three timelike curves.We use colors in this graph
to denote horizons and infinities. The blue lines denote future and past null infinites.
The yellow lines denote the Cauchy horizons, where r= r−. The gray lines denote the
horizons, where r= r+. The three timelike curves are drawn in cyan, magenta and green.

It is immaterial which are the three timelike curves; what is important is that one can use a numerical
program to draw the graph of these curves in the conformal diagram. This is only possible if one has
the explicit construction of the conformal diagram, as we present here.

6. The extraordinary noncausal region IIIb

6.1. On the sign of Υ

In his original article Kerr [16] presented the metric also in what is now known as the Kerr–Schild [18]
form. Then Boyer and Lindquist [12] used this form of the metric to express their Boyer–Lindquist
coordinates; from which it is clear that increasing the value of the angular coordinate ϕ in 2π implies
traveling around in a closed loop in the manifold. Since the sign of gϕ,ϕ is determined by Υ, in the
regions where Υ is negative, one has closed timelike curves, and the causal character of dt and drs
changes. All of this occurs inside region III; where we were using (46) and (47), and more specifically
in a sector within the zone r< 0.

The regionwhere gϕ,ϕ becomes positive, equivalentlyΥ change its sign, is depicted in the following
figures 4 and 5.

Let us observe that

uIII − vIII = 2rs =
1
κ+

ln(U)− 1
κ−

ln
(
Ṽ
)
= ln

(
U

1
κ+

)
− ln

(
Ṽ

1
κ−

)
= ln

(
U

1
κ+

Ṽ
1

κ−

)
, (52)

or

U= Ṽ
κ+
κ− exp(2κ+ rs). (53)

One extreme of the noncausal region is at r= 0 and θ = π
2 ; that is, at the ring singularity. Then,

performing the numeric integration of
´ π

2
0 k(r= 0,θ)dθ we obtain rs0 =

´ π
2

0 k(r= 0,θ)dθ = 0.66078;
so that one has:
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Figure 4. Three dimensional graph of the sign of gϕ,ϕ.

Figure 5. R01(r, δ ∗π) for δ= 0.5, 0.4, 0.3 and 0.29; where it shows negative values as
function of r.
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U0 = Ṽ
κ+
κ− exp(2κ+ rs0). (54)

The other extreme of the noncausal regions is for approximately r1 =−0.9, and θ = π
2 ; so that

rs1 = r1 +
2mr+
r+−r−

ln(1− r1
r+

)− 2mr−
r+−r−

ln(1− r1
r−

)+
´ π

2
0 k(r1,θ)dθ. However, at the moment we do not

have a numeric calculation of k for negative values of r, so we estimate
´ π

2
0 k(r1,θ)dθ with the above

value of rs0. In this way, for the other extreme one has:

U1 = Ṽ
κ+
κ− exp(2κ+ rs1), (55)

with the approximate value rs1 = 0.1651.
So, the natural question is, can one define a continuous uIIIa and vIIIa null coordinates inside the

noncausal region IIIb? In order to construct the null functions in some region, we need to have the
function K or k in that region. It happens that the partial differential equation that K or k must satisfy,
has problems whenΥ becomes negative, because as we show below the argument in the left square root
of equation (6) becomes negative. More concretely, the null geodesic congruence that we are using,
ceases to be integrable. That is, we cannot carry out the construction inside the noncausal region.
Moreover, any such construction that relies on a null congruence coming from null infinity, will have
the same fate. In other words, these type of constructions are not able to provide a continuous set of
null coordinates that enter the noncausal region. In fact, since it is a noncausal region, it would be
unnatural to think that there exists a mechanism such that this type of construction can be carried out
at all.

All these means that the interior of the noncausal region IIIb cannot be represented in a global
conformal diagram of Kerr spacetime.

This point has not been mentioned previously in the literature.

6.2. On the construction of the null congruence

In the previous subsection we have indicated that due to the nature of the calculation of the function
K, one can deduce that our construction for a double null coordinate system cannot be extended to
the noncausal region IIIb. In this subsection instead we will concentrate on the problems related to
the construction of the null geodesic congruence, that we employ in our construction. That is, we will
consider each geodesic at a time, where K is constant along each of them.

The existence of a noncausal region poses the question of what is the extent in the spacetime where
one can construct the reference null geodesic congruence.

First of all, it is worthwhile to recall that Carter has shown in [19] that in extending the manifold
to the future and to the past, one repeatedly encounters regions of type I, II and III, in an arrangement
shown in figure 2. In particular all regions of type III have the same geometrical properties. For this
reason, in this subsection we will concentrate on the region of type III which can be reached with past
directed null geodesics emanating from future plus infinity I+.

To study the behavior of the null geodesics let us concentrate in the r and θ motion, which are the
coordinates used by Kerr [16] and Boyer and Lindquist [12].

The r motion is given by:

Σ2ṙ2 =
[
E(r2 + a2)− aLz

]2
−K∆≡RLzE, (56)

where we have taken the opportunity to define RLzE. The θ motion is given by:

Σ2θ̇2 = K−
[
Easin(θ)− Lz

sin(θ)

]2
≡ΘLzE, (57)
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which invites us also to define the function ΘLzE as above. For our congruence we need to consider
Lz = 0, and without loss of generality, we take E= 1. Under these conditions we have that the right
hand side of (56) becomes:

R01 = (r2 + a2)2 −K∆=Υ−∆Θ01, (58)

since

Θ01 = K− a2 sin(θ)2. (59)

Let us note that due to the nature of the θ motion equation, one must have Θ01 ⩾ 0, and that in the
interior of region III one has∆> 0. In (58) we have rearrange terms so thatΥ appears explicitly. Since
Υ becomes negative in the noncausal region IIIb, one can see that R01 turns negative in this region,
and therefore indicates that a geodesic coming from outside this zone will not be able to enter into it.

Let us see this in more detail by studying the behavior of (58) withK= a2 sin(θ∞)2, which is shown
in the next graph. That is, let us study the null geodesics that we use to build the double null coordinate
system; which start at future null infinity, where θ∞ is the value of coordinate θ at this asymptotic
boundary. To facilitate the presentation we use in the graph the notation θ∞ = δπ, that is we express
θ∞ in terms of the more convenient parameter δ.

We would like to emphasize that the choice E= 1 is just done for simplicity and does not represent
a restriction, in particular, one can easily see that in the general case, K ′ = K/E2 satisfies equation (6).
It can be seen that for δ⋄ ≈ 0.289< δ < 0.5 one has that R01 shows negative values for some r’s that
are negative and greater than−1. At this point it is worthwhile to recall that Carter [19] has shown that
only the geodesics that strike the singularity are incomplete. Therefore, a null geodesic that reaches
a point where R01 becomes negative, as for example is the case for the null geodesic starting with
δ= 0.4, will not stop there, but will reverse its r motion. That is, in the previous motion one had ṙ< 0,
and after the point in which R01 = 0, one will have ṙ> 0. In other words, one therefore deduces that
for the chosen geometrical parameters m and a, the null geodesics coming from future null infinity,
with values of δ in the range shown in the graph, will invert the r motion to greater values; with the
exception of the critical value of δ⋄ where R01 shows a double root. This situation is analog to the
discussion in classical mechanics of the motion of one particle with conserved quantities; where for
fixed δ, the radial potential energy would be−R01(r, δπ) and the mechanical energy is zero. Note that
there is an equatorial symmetry with respect to this effect.

Also, it is observed that for δ ⪅ 0.289, the null geodesics in our congruence, coming from future
null infinity will continue to the asymptotic region r→−∞; so that one can construct our congruence
in the neighborhood of the axis of symmetry. Let us note that the extreme θ⋄ = δ⋄π has been estimated
for the case m= 1 and a= 0.8. These limiting values can be calculated solving a cubic equation for r⋄

and then calculating θ⋄; which are deduced from R= 0 and dR
dr = 0.

It should be noticed that for the geodesics with parameter δ in the range δ⋄ ⩽ δ ⩽ 1− δ⋄, they will
cease to form a hypersurface after the turning points, because from there they will inevitably cross
other geodesics in the congruence; which can also be checked by noticing that the spin coefficient ρ,
which is related to the divergence of the congruence, blows up when R goes to zero [13]. Of course
the special case is δ= 0.5, which are the geodesics that reach the singularity.

In summary, our construction for a double null coordinate system cannot be extended to region IIIb.
Therefore, the noncausal region cannot be represented in the conformal diagrams.

6.3. Calculation of the function k

We have been able to integrate k, for all values of θ, up to r= 0, as it is shown in the next graph.
In figure 6 it is shown the graph of the numerical integration of k from r=∞ up to r= 10−16;

which indicates a smooth behavior of the function for positive r.
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Figure 6. Numerical solution of k in terms of the coordinates (ξ,θ).

7. General conformal diagram of regions I, II and III

The existence of the extraordinary noncausal zone b in region III poses a number of questions on the
physical reality of the whole region III. As Carter has pointed out [19], one can have closed timelike
lines that extend to any part of region III. It is outside the scope of this work to review the studies on
the global causal structure of Kerr spacetime; instead, we would like to present a useful tool that helps
to carry out those studies.

An explicit conformal diagram of the three regions I, II and III is presented here.
Region IIIa is the zone of region III where r− ⩾ r⩾ 0.
We have noticed before that the noncausal region IIIb cannot be represented in a global conformal

diagram of Kerr spacetime. However we can draw in the conformal diagram, the lines corresponding
to the largest and smallest radius in the boundary of the noncausal region. Those are the red and salmon
lines in the graph of figure 7 . The b in the graph, is just to indicate that the red and salmon lines are
extreme points of the noncausal region. It should be emphasized however that other points, outside
the noncausal region, might be drawn in the conformal diagram into the two dimensional area in the
graph between the red and salmon lines. This is expected, since one is dealing with a four dimensional
spacetime, but one is drawing two dimensional conformal diagrams. In fact, recall that for regular
regions, as those of type I and II, all points in a particular sphere rs =constant, are plotted in the same
point in the conformal diagram.

The zone c is the zone of region III where r is negative and outside the noncausal region. We denote
this as the region IIIc.

The bottom line is that the topological causal properties of the four dimensional manifold can be
deduced from the structure of the conformal diagram that we have just introduced. Therefore, since in
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Figure 7. Conformal diagram of the three immediate regions. Region III is subdivided
in zones a, b and c. Note that the red line denotes the boundary of the noncausal region,
and the ring singularity. The reason for the curly shape of these curves is that one regular
coordinates uses κ+ in its definition and the other uses κ−; as explained in the text. We
denote with ‘r− int’ the line in the conformal diagram indicating the value r= r− in
the interior region III, to distinguish it from the Cauchy horizon CR which also satisfies
r= r−. We denote with r=−∞+ and r=−∞− the asymptotic regimes of region
III, for r→−∞, to the future and to the past respectively. The notation CL and CR
was introduced before in the text. We denote with ‘r+ int’ the line in the conformal
diagram denoting the value r= r+ in the interior region II, to distinguish it from the
future horizon Hf , defined previously. We use I+ to denote future null infinity of the
physical region I. We use I− to denote past null infinity of the physical region I. Hp is
used as before to denote the past horizon of the black hole. As explained in the text, we
denote with rs0 the value of rs at the ring singularity, where the value of the r coordinate
is 0. Also, we use rs1 to denote the value of rs at the extreme of the noncausal region,
for the smallest value of the coordinate r; estimated to be around−0.9 for our choice of
geometrical parametersm and a. The region IIIa correspond to points in region III where
the radial coordinate is larger or equal than zero, r⩾ 0. The region IIIc correspond to
the points in the zone of region III where r< 0 and are outside of the noncausal region
IIIb. As explained, region IIIb cannot be drawn in the conformal diagram, but we can
draw the line corresponding to the largest value of r, and the line corresponding to its
smallest value in the noncausal region.

region III one is missing the noncausal zone, the topology implied by the original Carter conformal
diagram at the symmetry axis, cannot be extended to the global spacetime. This subtle point is generally
missed, since even in textbooks [20], the introduction of conformal diagrams of Kerr spacetime do
not mention this issue. In fact in those diagrams, one cannot draw timelike curves, not even the ring
singularity with precision, since the authors do not have or provide, the set of needed double null
coordinates that would allow for those drawings. We solve this situation with our present work.
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8. Final comments

In this article, we have presented for the first time, an explicit construction of a conformal diagram
for the spacetime of a black hole with angular momentum, which is valid globally; as opposed to the
previous ones that where only valid at the axis of symmetry.

We have shown how to define appropriate smooth null coordinates across outer and inner horizons,
so that our construction allows us to extend these diagrams to the complete spacetime, where now each
point represents the intersection of the null coordinates.

All previous findings on the global causal structure of Kerr spacetime [19] can be reproduced with
our choice of double null coordinates, of type (u, v) and of type (U,V); with the advantage that now
we can visualize this structure through the global conformal diagrams as that of figure 7. Although we
have concentrated in this article in regions I, II and III, it is clear that our construction can be naturally
extended to the maximal analytic manifold [12]; so that we givemeaning to diagrams of the type shown
in figure 2 outside of the axis of symmetry.

Previous presentations of conformal diagrams of the extended Kerr geometry [20, 21] were of
qualitative nature andwere not able to calculate in the graph specific curves or regions. For instance, the
graphs in figures 11.7 and 11.8 of [21] are not ‘global conformal diagrams’ since they are constructed
from demanding that two coordinates are maintained fixed; so that the curves we computed in this
work cannot be drawn on those diagrams. In particular, in [21] the authors erroneously state, copying
an error from the MTW textbook [22], that their function v is null, (which in [22] is called Ṽ). Since we
use these symbols in our article we rename their function to vK , since Kerr used the retarded version
of it. Then one can readily calculate that gabdvKa dv

K
b =− a2 sin(θ)2

r2+a2 cos(θ)2 ; which is different from zero at
generic points, and therefore indicates that it is not a null coordinate. Note that the contraction is
zero at the axis of symmetry. In the MTW textbook the error appears in point 10−3, in page 880 of
the 1973 edition. This mistake might be the source of the general belief in the community that Kerr
spacetime was almost as easy as Schwarzschild one. But in fact, the subtleties of Kerr geometry make
all discussions much more difficult. A confusing fact, for example, is that the function vK contains the
geodesics defining the principal null directions; but this null congruence has twist and therefore does
not define a null function. For this reason in [13] we dealt with a null congruence without twist, that
allowed us to define our pair of null coordinates for Kerr spacetime.

In contrast to this, our explicit construction of conformal diagrams for Kerr spacetime, has permitted
us here to numerically draw arbitrary curves, as those shown in figure 3, and the boundary of the
noncausal region, depicted in figure 7 .

The possibility to construct these type of global conformal diagrams contributes to the visual under-
standing of the global structure of the spacetime.
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