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Abstract

We present a new measure that can be used for the detection of an unknown gravitational wave
signals in two detectors, without recurring to a priori templates or whitening of the strains.

For an evaluation of its properties we apply our measure to the LIGO data of the GW150914
event and detect the existence of a similar signal with 99.99% con�dence level. We also use the
new measure to study the strains in the gravitational wave observatories for the events 151012_2,
GW151012, GW170104 and GW190521.

We compare our measure with other standard measures and �nd that it is stronger for the
studied data. Thus we are presenting a new powerful tool for the systematic study of unknown
gravitational wave signals in two or more observatories.
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1 Introduction

As the interferometric gravitational-wave observatories increase their sensitivity, the number of de-
tections also increase. In particular, in the O3a run of the Advanced LIGO and Advanced Virgo
they were able to increase the number of con�dent gravitational wave detections (GWTC-2)[1]
more than threefold over the �rst transient catalog GWTC-1[2]. In the presentation of the catalog
GWTC-2[1] the authors communicate that they have used two methods to identify candidates;
one that searches for minimally modeled sources and other that searches for signals from a bank
of template wave forms[1]. They have also mentioned that they have used the Coherent Wave-
Burst (cWB) algorithm based on the maximum-likelihood-ratio applied to power excesses in the
time-frequency domain[3]. More recently the LIGO/Virgo Collaboration has presented the catalog
GWTC-3[4]; where they also use the same type of detection techniques.

Every detection of a gravitational wave event captures the attention of a large part of the
community which is very interested in the details of the detected signals. For this reason we have
been studying the characteristics of the these signals; in order to be able to relate them with
corresponding theoretical frameworks. In this process, we have �rst developed a non-destructive
pre-processing �ltering technique; that had allowed us to discover more relevant physical signal for
the GW150914 event. Afterwards we have started the study of techniques for the comparison of
unknown similar signals in the strains of two detectors, and in the process we have constructed an
optimized measure that could be used, in post-detection detailed studies, that can even provide
more information of the detection process itself. This article is devoted to the presentation of such
measure.

When employing templates, most pipelines identify the gravitational-wave signals by matched
�ltering[5, 6, 7, 8] data; using a bank of �lter waveforms with a range of source parameters. Although
normally the search is carried out with an assessment in the mass range and the assumption of
quasicircular orbits[4]. However, with the increase in sensitivity of the observatories, there appear
detections of systems that seem outside of the expected range of parameters. For example, the event
GW190521 has been reported to have a remnant of 150M�[9]; which is an unusual high mass. In
reference [10] the LIGO/Virgo Collaboration have presented the properties of this system `under the
assumption of a quasi-circular BBH coalescence'. But it has also been suggested[11] that probably
this system corresponds to the capture of two non-spinning black holes on hyperbolic orbits. In
other words, some simplifying assumptions seem not tenable. Thus, it would be advantageous to
have a method of detection that does not depend on assessments and assumptions on the details
of the astrophysical system. Our proposed method below is constructed with these ideas in mind.

In the cWB algorithm[3] the detected time series is �rst treated with a Wilson-Daubechies-
Meyer transform and is �ltered by a whitening process. These time-frequencies series are then
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combined from those coming from all detectors, by their sum of squares; which are maximized for
all possible time-of-�ight delays in the network. Dealing with time-frequencies series implies that
one has to deal with two dimensional arrays, with the consequent demand on computer memory.

Our method, only deals with the time series, and does not use any whitening techniques. Instead
we use here the pre-processing method based on FIR �lters that have excellent behavior with the
phase of the strain, that avoids the attenuation of astrophysical signal, and therefore allows to
see `more' relevant information of the gravitational detected wave; for this reason we call this the
pre-processing More19 method, which was described in [12]. In particular by using this method,
we discovered in reference [12] that the signal of a gravitational wave has a duration 0.5s; while in
their publication[13] the LIGO/Virgo team could only show a signal of a about 0.1s duration.

In spite of the drawbacks of the whitening techniques, associated to huge deformation of the
signal and the statistics, those methods have been used in a successful and e�cient manner for
the detection of transient gravitational waves[14]. The measure we present in this article has been
developed as a useful tool in post-detection studies; although, as we will see in this article, it could
probably be adjusted to be used in the detection process itself.

We here suggest to carry out the comparison process of similar gravitational-wave signals in two
detectors using an optimized measure(OM) that we present below; which is independent of model
assumptions, and templates and does not use whitening techniques. We denote the new measure
OM with the symbol Λ, which it will be shown to be somehow related to the likelihood ratio[15]
calculation for the detection of a known signal in a single detector. Before applying this measure
we subject the strains to the pre-processing More19, mentioned above.

While the measure is designed for a pair of detectors; in the case of a network of detectors
with three or more of them, one can either apply the measure for each pair independently, or
assuming the statistical independence of the measuring process for each detector, one can consider
the multiplication of the measures of all pairs

The organization of this article is as follows. In section 2 we present a new measure to compare
the content of signals in the strains of two detectors; where for the sake of simplicity of the presen-
tation we relegate to an appendix some arguments in favor of our choice. Also, we include a short
description of the correlation coe�cient in another appendix. In section 3 , to test its properties, we
apply this new measure to the case of the GW150914 event, and present the analysis that conduces
us to the detection of similar signals in the two LIGO strains recorded for this event. We carryout
some detailed studies of the new measure with this well known event, that has a very strong signal.
To test the behavior of the measure OM under di�erent circumstances, we compare the signals
in the events 151012_2, GW151012, GW170104 and GW190521 in sections 4 - 7. In particular
GW190521 involves three strains, since the Virgo detector was online at that time. In section 8 we
include some �nal comparisons and comments on this work.

2 New measure for the comparison of signals in

two detectors

2.1 Preliminaries on measures

In the literature one can �nd many approaches for the study of data that intends to determine
whether a known signal is present in the data; however works considering to determine whether
an unknown signal is present in two separate and independent sets of data are rare. In order to
build the needed new measure, we have been guided by the usual method of maximum likelihood as
much as we could; since: �Although the maximum likelihood principle is not based on any clearly
de�ned optimum considerations, it has been very successful in leading to satisfactory procedures in
many speci�c problems.�[16] The choice of a maximum likelihood method is also based on the fact
that we are dealing with a non-parametric detection[15]. Due to the fact that from our proposed
measure Λ, we will deduce important results, we will go through a detailed presentation of it; but to
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avoid distraction of the main content of this article, we present in appendix A a line of arguments
that support our choice for the new measure Λ. These arguments are based on trying to adapt
the likelihood method, of searching for one signal in one data, to our case. However we have to
moderate the �rst natural de�nition of likelihood so that the measure becomes useful.

The arguments presented in appendix A, are not intended to be a deduction. They are only
presented to connect our de�nition of the measure Λ with other related constructions that have
been used in related works. That is, there is no right or wrong de�nition of a measure, any de�nition
of a measure is arbitrary and so is ours; the question is if it is useful for some purpose. We claim
that our de�nition is useful since it is the most powerful[16] when compared with two other natural
choices and it has allowed us to observe the gravitational wave in the LIGO data of the GW150914
event, with unprecedented level of signi�cance, that we present below.

To give perspective to the strengths of our measure Λ, we here, in section 2.2, present our
calculation of the likelihood ratio L to test the hypothesis that a similar signal is recorded in the
strains of two detectors, versus the hypothesis that no similar signal has been recorded in both
detectors; we present our measure Λ in section 2.3 and we also recall the correlation coe�cient ρ
between the two strains in section 2.4. Then, in section 3 we discuss the application of these three
measures to the case of the data of the GW150914 event.

2.2 The likelihood ratio for the detection of an unknown signal in

two detectors

In appendix A.2 we have deduced the expression for the likelihood ratio to test the hypothesis that
a similar signal is recorded in the strains of two detectors, versus the hypothesis that no signal has
been recorded in both detectors, which, in terms of the data, is given by:

L(v1,v2) = exp

[
m− 1

2

( 1∑m
k=1 v

2
(1)k

+
1∑m

k=1 v
2
(2)k

) n∑
k=1

v(1)k v(2)k

]
; (1)

where the width of the window to calculate sample variances, that is m, is chosen appropriately
depending on the nature of the observations, and we are assuming that the means are zero.

This estimation of the desired measure have some di�culties. The factor
(

1
N01

+ 1
N02

)
(See

appendix A.2 for details.) is rather huge, when using LIGO data, and it does not contribute to
strengthen the comparison of the data. Expression (1) is the theoretical deduction of the likelihood
ratio, but for actual numerical application to the gravitational-wave data, we will use (7); for reasons
that we explain below. Huge exponents are undesirable since might lead to unwanted numerical
error or even over�ow errors. For these reasons, we present our measure Λ next.

2.3 The measure Λ

Due to the di�culties found in using the likelihood ratio, just presented, we constructed a new
measure OM that turns out to be useful for our purposes. Our arguments, that led us to this
construction, are presented in appendix A.

We here present the measure in synthetic form.

When dealing with data from gravitational-wave observatories, one is confronted with time
series, which are supposed to contain signals from gravitational waves; that might last, from a
fraction of a second to several seconds; depending on: the astrophysical nature of the source, the
intensity, the noise state of the detectors at the time of recording, etc. Then, in designing tools for
the analysis of the data, and considering the transitory nature of the expected gravitational-wave
signals, it is convenient to introduce windowing techniques that allow for the study of portions of
the data. For this reason we introduce an inner product that contemplates this point.
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We de�ne an inner product for two strains x(τ) and y(τ). The inner product is calculated
through the convolution with an appropriate window w(t− τ), and is de�ned by:

< x,y > (tj) =
∑
k

x(tk) y(tk)w(tj − tk); (2)

where we use the fact that the data is obtained at discrete time intervals. For the continuum
notation below we will use t instead of tj .

For the speci�c case of the observation of gravitational waves at two detectors, let v1(τ) repre-
sents the strain at one detector with respect to its proper time, and v2(τ − δ) represents the strain
at the other detector, with time shift δ.

Then, we de�ne the time dependent Λ measure from

Λ(v1,v2, δ, t) = exp

[
1

σ∗12

< v1,v2 >

< (v1 − v2), (v1 − v2) >

]
; (3)

where σ∗12 is the standard deviation of <v1,v2>
<(v1−v2),(v1−v2)> . As already mentioned, in appendix A we

present arguments that support this choice for the measure.
In short, this measure can be understood as coming from an adaptation of the likelihood method

to our case, with contrast accentuation and overall moderation. Our choice gives reasonable results
with actual LIGO data.

Although the arguments presented in appendix A use the idea of having the same signal in two
strains, the measure Λ also indicates the existence of similar signals in two strains; namely, when
the signals s1 and s2 recorded in the detectors satisfy s2 = s1 + ε, with max |ε| � max |s1|. This
is precisely what happens when we apply the measure OM to the data of the GW150914 event; as
shown below.

For the window w we use a Tukey window, from the scipy signal python library, with width
that is chosen for each event, and parameter alpha = 1/8; which has excellent behavior. The
convolution is performed with the e�cient �tconvolve function from the same library.

It is probably worthwhile to mention here that during the �rst times of gravitational-wave obser-
vations, only the Hanford and Livingston detectors were on line; and that due to their orientation,
for all practical purposes, the strain of one of them was often compared with minus the strain in
the other; as it was the case in the event we are considering here GW150914. However, it is not
true that the recorded signals satisfy that one is minus the other, since we know that actually due
to a non-exactly opposite alignment of the detectors, they should record two di�erent projections
of the spin 2 gravitational wave. When considering other detectors in the network, as for example
Virgo or Kagra; this e�ect becomes more noticeable. But in all cases one would be confronted with
the situation that any two of the detectors in the network, would record, let us say for a binary
collapse, few oscillations of comparable magnitude and frequencies. Our measure would report on
these type of coincidences; that is, even if the morphology of the rest of the gravitational wave have
di�erent phase behavior; as expected when recording a spin 2 gravitational wave with detectors
having di�erent orientations.

2.4 The correlation coe�cient

One could have thought that the natural thing to do was just to consider the correlation coe�cient[17,
18, 19, 16] between the two strains, with a time shift added to one of them. Then, taking into con-
sideration the characteristics of the gravitational-wave observation, mentioned above, we de�ne the
correlation coe�cient in terms of the natural inner product by:

ρv1,v2 ≡
< v1,v2 >√

< v1,v1 >< v2,v2 >
. (4)

The fact is that the correlation coe�cient gives very low response; as we show in appendix B and
in discussions below in section 3 and 8.
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2.5 Minimal test for Gaussianity behavior

In the preceding subsection we have presented a new measure to compare similar signals in two
detectors. The motivating arguments are presented in the appendix A which make use of the
assumption that the noise at both detectors are close to a Gaussian behavior. Just by observing
the amplitude spectral density of the strains at Hanford and Livingston, one can see that the data is
no perfectly Gaussian. However, there are many ways in which this assumption can be tested, and
several articles in the past have addressed this point; but we here instead present graphs of what can
be considered the most direct minimal test for Gaussianity behavior, namely the histogram of the
data of the GW150914 event. We must emphasize that the behavior shown in the graphs of �gures

Figure 1: Comparison of the histogram of Livingston data(green) with a Gaussian(red). On
the left the complete histogram of 256 seconds of the data, centered at the time of the event.
On the right the detail of the graph in the central region.

Figure 2: Comparison of the histogram of Hanford data(colored surface) with a Gaussian(red
curve). On the left the complete histogram of 256 seconds of the data, centered at the time of
the event. On the right the detail of the graph in the central region.

1 and 2 , are obtained after we have applied the pre-processing �ltering techniques More19 that we
have described in [12]. Figure 1 shows the histograms for the Livingston data of 256 seconds centered
at the time of the event, and compared with a Gaussian with σL = 4.92212e− 22. Figure 2 shows
the histograms for the Hanford data of 256 seconds centered at the time of the event, and compared
with a Gaussian with σH = 4.83976e−22. The standard deviations σL and σH were calculated from

the data. For completeness, the Gaussian function is given by: G(x, σ, µ) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
.

For both detectors the median was essentially zero.
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In order to give perspective to the relevance that has this Gaussian behavior as a result of our
More19 �ltering approach, we show here what is the result on the time series after applying the
whitening �ltering procedure used by the LIGO/Virgo Collaborations. The histograms of the time
series of 256 seconds centered at the time of the event, after applying the whitening �lters to the
Livingston and Hanford strains of the GW150914 event, are shown in the graphs of Fig. 3 and 4 .

Figure 3: Comparison of the histogram of the Livingston time series after applying the
whitening procedure as describe by LIGO tutorials. We use the same graphic scripts as above.
On the right the detail of the graph in the central region. The fact that the maximum appears
a little to the right, on the detailed graphs, is an artifact of the graphic script based on the
notions of bins.

Figure 4: Comparison of the histogram of the Hanford time series after applying the whitening
procedure as describe by LIGO tutorials. We use the same graphic scripts as above. On the
right the detail of the graph in the central region. The fact that the maximum appears a little
to the right, on the detailed graphs, is an artifact of the graphic script based on the notions of
bins.

It can be seen in the graphs of Figs. 3 and 4 that the whitening procedure changes completely
the statistics of the time series, since now the histograms show a huge departure from a Gaussian
behavior. One might ask, what is the reason for this extreme behavior. This can be inferred from
the time domain graphs of the strains after whitened and band-pass �lters. In Fig. 5 we show
the complete 256 seconds strain after whitening and band-pass �lters are applied, following LIGO
procedures. It can be seen that there are important boundary e�ects. For this reason we trimmed
the strain, by cutting o� 3s on each extreme, to obtain a total length of 250s strains. In Fig. 6 we
show the remaining 250 seconds strains after whitening, band-pass �lters and trimming are applied.
It can be seen that now the strain is very quiet with an important spike near the time of the event.
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Figure 5: Time domain graph of the whitened and band-pass strains of the complete 256sec-
onds data.

Figure 6: Time domain graph of the whitened, band-pass and trimmed strains of the remaining
250seconds strain.

The corresponding histograms after the trimming are shown in the graphs of Fig.7 ; where now
one can see a Gaussian behavior for the remaining whitened noise.

Figure 7: Histograms of the strains after applying whitening and band-pass �lters, and after
trimming the extremes in order to avoid boundary e�ects.
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This Gaussian behavior for the remaining noise makes one wonder whether our measure Λ would
give good results when applied to this whitened strains; which we will study in the next section.

3 Detection of similar signals in the two LIGO

observatories for the GW150914 event

3.1 Study of the measure Λ as a function of time

In order to see how this new measure behaves with real data, we apply it to the event GW150914
as a test bed to study its properties.

We show in �gure 8 the graph of our measure Λ as a function of time, for the Livingston
strain(L) against the nominal Hanford(H) strain shift of δ = −0.007s, in the interval -10s, 10s from
the time of the event te; for a Tukey window of 0.5s width, where it can be seen that there is a
sharp peak at about 0.0s, that is at the time te; where we have advanced the time axis by the width
of the window. The sign of the H strain is obviously chosen so that the natural inner product with
the L strain gives a positive result when comparing. The actual statistic is calculated in the lapse
of time ±11s around the event time, which at this moment is a preliminary arbitrary choice and
will be studied further in the next subsection.

Figure 8: The measure Λ(t) for the shift δ = −0.007s for the Hanford (-)strain, in the range
±10s, with respect to the Livingston strain.

Figure 8 shows that close to the time of the event there is a sharp peak, indicating that most
probably both detectors have recorded a similar signal in the window w before this time.

The sharp behavior of this measure invites us to calculate a coarse estimate of the level of
signi�cance by using directly Chebyshev inequality[19], that we recall next:

Theorem 3.1 Let X be a random variable and let λ(x) be a non-negative function. Then, for any

r > 0,

P (λ(X) ≥ r) ≤ E(λ(X))

r
. (5)

Here P means probability and E expectation value.
The �rst estimate of the level of signi�cance α0 can be calculated from identifying λ = Λ and

taking r = max(Λ) = 58.21. Then, from the numerical calculation E(Λ) = 2.338, we obtain
α0 = 0.0402.
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With the knowledge of the standard deviation, we can use the customary form of the Chebyshev
inequality that sets:

P (|X − µ| ≥ tσX) ≤ 1

t2
; (6)

where µ = E(X) and σX is the standard deviation. Then, by identifying X with Λ, and using the
calculated value of σΛ = 4.4406, we obtain the second estimate of the level of signi�cance α1 given
by α1 = 0.0063. It can be seen that this second estimate improves on the �rst one; since we are
using more information on the statistics of Λ.

The Chebyshev inequality is normally applied when the probability distribution for the situation
under study is not known. Let us try to infer more information on the statistical properties of Λ.

Figure 9: Histogram of Λ measure for a limited part of its domain.

In �gure 9 , in order to show some detail, we present the graph of the histogram of our measure
for a limited part of its domain, that does not include the maximum value, close to sixty. The
sample corresponds to a strain of 22 seconds centered at the time of the event. It can be seen,
since the distribution only involves positive values, that the histogram does not show a Gaussian
behavior. Instead it does resemble a log-normal behavior.

This, in turn invites us to see what is the behavior of the histogram of the exponent, that we
show next.

Figure 10: Histogram of logarithm of Λ measure. It is also shown with verticals lines the
median, 1, 2, 3 and 4 sigmas, and with a black vertical line, the position of the maximum
observed.
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In �gure 10 we show the graph of the histogram of the logarithm of our measure for the 22s of
the strains; where sigma is the standard deviation. The Gaussian curve is calculated from the mean
and the standard deviation. It can be observed that the Gaussian red curve is a good smoothed
approximation of the behavior of the histogram. The black vertical line shows the position of the
maximum of the logarithm of the measure, observed at zσ, with z = 3.70749.

Identifying a Gaussian behavior for the logarithm of Λ, we can assign the level of signi�cance[16]
α = (1/2)[erfc(z/

√
(2))]; where erfc is the complementary error function. Equivalently we can

also de�ne the con�dence level γ = (1 − α). The values so obtained are: a level of signi�cance
α = 0.000105, and a con�dence level, or con�dence coe�cient[18], γ = 0.99989.

This is a remarkable strong behavior of the measure OM; since for the data we are analyzing
it gives us 99.99% con�dence that there are similar signals in both detector strains, for the chosen
window. We will see next that this measure is stronger than the other two we are considering in
this article.

Let us note that the LIGO/Virgo Collaborations[20] use for this event a measure based on a
matched-�lter signal-to-noise ratio, which employs templates, and can not be compared directly
with our method.

3.2 Adjustment of the lapse of time to be used

Since the measure OM works without a priori assumed templates, but just comparing the two strains
of the distinct gravitational wave detectors, it is subject to the possibility of �nding strong random
noise of seismic origin with similar frequencies and phases. For this reason, one is interested in
maintaining the lapse of time, for the strain comparison to a minimum, so as to avoid the previous
inconvenience and obtain a reasonable statistic behavior. Because of this, we �rst carry out a
preliminary study on the behavior of the measure OM in order to estimate a reasonable working
lapse of time.

In [13] the authors present an study designed to operate without a speci�c waveform model, for
signal frequencies up to 1 kHz and durations up to a few seconds. In reference [21] the LIGO/Virgo
Collaboration analyzed coherently 8s of data with a uniform prior. In the article [22] the same
Collaboration studied correlations on the order of the duration of transient astrophysical signals; a
fraction of a millisecond to a few seconds; and they also added: �noise transients with a large amount
of broadband power can corrupt the analyzed data up to the duration of the strain-equivalent noise
PSD estimate, ±8s from the time of the noise transient.�; which corroborates our view above.

Taking the range of lapse of times used by LIGO/Virgo team, we next study the range for lapse
of times: [8, 16, 24, 32, 40, 48, 56, 64] seconds. In Fig.11 we show the graph that studies the
behavior of the level of signi�cance α with the length of the lapse of time.

Figure 11: Graph of the level of signi�cance as a function of the length of the lapse of time
considered.
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It can be seen from Fig.11 that the signi�cance for this event, shows an starting decreasing
tendency, up to a width of about 40 seconds, when it gets into a stationary phase. This suggests
that we should consider the lapse of time of 40s for our studies.

Figure 12: Graph of the measure and histogram of ln(Λ) for the 40s lapse of time.

In Fig.12 we show the graphs of Λ and of the histogram of ln(Λ) for the 40s lapse of time. Let
us note that all the histograms are calculated with 1000 bins; so that, as in this case, the amount
of data might not be su�cient to produce a smoothed graph. In order to quantify how close the
histogram is to a Gaussian behavior, we have also included the curve of the appropriate average,
that was calculated with a Kaiser window. One can see that the Gaussian curve, shown in red, is
fairly close to the average of the histogram, shown in blue. We have also estimated the relative
average error between these two curves; which in this case gives 0.088, that is, just few percents.

With the chosen length for the lapse of time, we now have z = 3.94165 and therefore signi�cance
of α = 4.05e-05 and con�dence coe�cient γ = 0.9999595; which improves by a factor of 2.6 on our
previous estimate using the ±11s interval.

3.3 Applying the optimal measure to the whitened strain

Since we have seen that the noise of the whitened strain also shows a Gaussian behavior; it is natural
to consider then the action of the measure OM to the whitened strain. We have also considered
the same range for lapse of times and we show the histogram of ln(Λ) for three cases in Fig.13.

Figure 13: Graph of the histogram of ln(Λ) for whitened strains.

It can be seen from the graphs in Fig.13 that when we apply the measure OM to the whitened
strains, we can not sustain a behavior that is close to Gaussian. In particular we can see that the
relative error for a 8s width is 0.938, for a 40s width the relative error is 0.483s while for the 64s
width the relative error is 0.339. In all these cases this quantitative estimation of the relative error
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is too high to allow us to consider the behavior of the measure OM on the whitened strains to be
close to Gaussian. For this reason we do not consider our measure on whitened data any further.

Of course one could still use the language of `signal to noise' ratios, applied to our measure on
whitened strains; but on one hand we do not want to compete with LIGO techniques, and on the
other hand we are trying to stay close to standard statistical treatments based on the concept of
probability.

3.4 Study of the other measures as a function of time

For the numerical calculation of the likelihood ration L, we make use of the natural inner product
de�ned above, so that the detailed expression of L to be used with gravitational-wave data is:

L(v1,v2) = exp

[
1

2

( 1

< v1,v1 >
+

1

< v2,v2 >

)
< v1,v2 >

]
. (7)

When we try to use the likelihood ration L, that we calculated above, to the data of the GW150914
event, we obtain an over�ow error using python. From the previous discussion, it is suggested to
also study the behavior of the logarithm of L. In �gure 14 we shown the histogram of the logarithm
of the likelihood ratio, along with the position of its median, sigmas, and the maximum of the
logarithm of L with vertical lines and the theoretical Gaussian calculated from the median and the
standard deviation. The maximum of the logarithm of L is located at zLσL, with zL = 2.85729
(Shown in �gure 23.). Identifying a Gaussian behavior for the logarithm of L, we can assign the
level of signi�cance αL = 0.00213. This means that this measure gives a signal about 53 times
weaker than our optimized measure.

Figure 14: Histogram of the logarithm of likelihood ratio L. It is also shown with verticals
lines the median, 1, 2, 3 and 4 sigmas, and with a black vertical line, the position of the
maximum observed.

The behavior of the correlation coe�cient is studied in appendix B ; instead, here in �gure 15
we shown the histogram of the correlation coe�cient, with the position of its median, sigmas, and
the maximum of ρ with vertical lines and the theoretical Gaussian calculated from the median and
the standard deviation. The maximum of ρ is located at zρσρ, with zρ = 2.85978. Identifying a
Gaussian behavior for ρ, we can assign the level of signi�cance αρ = 0.00212. This means that the
correlation measure gives a signal about 52 times weaker than our measure.
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Figure 15: Histogram of the logarithm of the correlation coe�cient measure ρ. It is also
shown with verticals lines the median, 1, 2, 3 and 4 sigmas, and with a black vertical line, the
position of the maximum observed. They show a remarkable similarity in shape.

Summarizing, the problem of detecting a gravitational-wave signal in noise can be posed as
a statistical hypothesis testing problem[23, 24], and we have studied here the problem to test the
hypothesis that a similar signal is recorded in the strains of two detectors, versus the hypothesis
that no similar signal has been recorded in both detectors with three di�erent statistical measures.
Our optimized measure OM, the likelihood measure and the correlation coe�cient measure all show
a statistical behavior that is very closed to Gaussian. In particular for the measure OM, we have
quanti�ed its behavior. The use of each of these three measures gives us very high con�dence levels
for the detection of similar signal in both detectors.

By comparing the level of signi�cance that we can give to the detection of a similar signal in
the two LIGO observatories data, for the GW150914 event, using the three measures, we conclude
that the measure OM, that we have introduced, is the strongest one.

In the next sections we apply the measure OM to a variety of di�erent events, presented in
chronological order.

4 Applying the measure OM to the 151012_2 event

The event 151012_2 was released as a `GWTC-1-marginal' kind, and assigned the GPS time
1128666662.2; equivalently the UTC Time: 2015-10-12 06:30. It was also assigned the network
SNR of 9.6. We could not found any suggestion for the arrival time at Hanford relative to Li-
vingston. We have chosen ∆tHL = 0.0099s.

We have �rst applied the same band-pass �lter of 22-1024Hz, but a preliminary study of the
strains showed a strong presence of low frequency noise. For this reason we decided to move the
low frequency of the pass band from 22 to 32Hz.

With this choice for the low limit of the pass band �lter, the strains have a Gaussian behavior
and the 20s graph of Λ, with a 0.5s window, is shown in Fig. 16 .
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Figure 16: Graph of Λ for event 151012_2 near the event time.

Although there are small peaks, they do not seem to be associated to a signal, but to the state
of the observatories; since noise of low frequencies is present around the time of the event; as it can
be seen in Fig. 17.

Figure 17: Closer look to the strains in time domain of 151012_2, near the peak around at
-2.5s before the event time.

In a work dedicated to 151012_2 one should consider further �lters; but in our case, we are just
studying the behavior of our measure to this marginal event. Then, from Fig. 16 , we conclude
that the measure OM does not show a con�dent signal near the time of the event for the duration
considered.

5 Applying the measure OM to the GW151012 event

The event GW151012 was released as a `GWTC-1-con�dent' kind, and assigned the GPS time
1128678900.4; equivalently the UTC Time: 2015-10-12 9:54; but we use in our work the time-event
1128678900.45. It was also assigned the network SNR of 9.3. This event shows low levels of signals.
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Due to the proximity to the previous event, in this case, it shares the characteristic of the noise
for this study.

In particular in reference [25] the authors suggest that the arrival time at Hanford relative to
Livingston is ∆tHL = −0.0006± 0.0006s. From the same reference, one can infer that the authors
estimate a signal duration of about 0.5seconds. Since the pre-processing �ltering techniques More19
normally shows longer signals than those found by the LIGO team, we tried several longer durations
and �nally settle for a signal duration of 0.8s. The preliminary application of the measure OM to
this event with ∆tHL = −0.0006s and duration of 0.8s gave no signal close to the time of the event.

Due to this negative result, we studied in detail the time delay and detected that the value
∆tHL = −0.0012s produces a signal in the Λ which we show in Fig. 18 .

Figure 18: Behavior of the measure Λ near the event GW151012; using the time delay
∆t−HL = −0.0012s, and a window of 0.8s.

We concludes from Fig. 18 that there is a weak signal corresponding to the comparison of the
Hanford and Livingston strains close to the GPS time 1128678900.45, corresponding to the arrival
time at Hanford relative to Livingston of ∆t−HL = −0.0012s and with a signal duration of at least
0.8s.

We have seen then that even in this problematic case, with low level signals, the measure OM
can assign a weak signal for the GW151012 event. Note however that this measure can not clarify
whether the signals are of astrophysical origin; since it only deals with the similarities.

Here we just study the behavior of the measure OM when applied to the GW151012 event. It
is not our intention to proceed further with a detailed study of the event, and instead concentrate
on the behavior of the measure on di�erent kinds of events. For further properties of GW151012
see for example [20, 26, 25, 27].

6 Applying the measure OM to the GW170104 event

The event GW170104 was released as a `GWTC-1-con�dent' kind, and assigned the GPS time
1167559936.6; equivalently the UTC Time: 2017-01-04 10:11. It was also assigned the network
SNR of 13.8. We have used version v2 of the corresponding LIGO strains.

According to reference [28] the relative Hanford to Livingston arrival time shift is ∆t = −0.003s;
and we have used ∆t−HL = −0.00305s in our work.

The authors of [28] also assert that the two strains are well calibrated in the the frequency range
[20,1024]Hz. For the pre-processing �ltering we used a pass band of [27.0,1003.0]Hz.
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The graphs appearing in [28] show strains with signals lasting approximately 0.11s. From
observing the strains after applying the pre-processing �ltering techniques More19, we detect signals
that last approximately 0.28s; which we use in the settings of the measure OM.

Figure 19: Behavior of the measure Λ near the event GW170104; using the time delay
∆t−HL = −0.00305s and a window of 0.28s.

It can be seen in the graph of Fig. 19 a very strong Λ signal near the event time. In fact,
the statistic of the optimize measure OM allows us to assign an outstanding level of signi�cance
of α = 5.5 × 10−8 to the detection of similar signals in the two LIGO observatories for the event
GW170104.

The impressive con�dent level that this measure gives for this event, corroborates the extension
of the physical signal to about 0.28s. This obviously deserves a detailed study of the event, but
as mentioned before, we are here concentrating in presenting the behavior of the measure OM to
di�erent events; and we will proceed with in-depth studies on another occasion.

7 Applying the measure OM to the GW190521 event

At the Gravitational Wave Open Science CenterGWOSC web page, the GW190521 event is pre-
sented in its fourth version as a release of type 'GWTC-2.1-con�dent'. However, since we have
noticed that the v4 version has been subjected to unknown kind of �lters, we work with version v1;
which is described as a release of type 'O3_Discovery_Papers'.

The LIGO/Virgo Collaboration has assigned the value 14.3 for their network SNR.

During this event the Virgo observatory was in operation, so that we also consider here its
strain.

According to [9], GW190521 is a short transient signal with a duration of approximately 0.1s.
Instead, after applying the pre-processing �ltering techniques More19, we have found that the
transient signal has a duration of approximately 0.35s; which we use in our work.

We found no information in the literature[9, 10] on the relative times of arrival of the signal
among the detectors. The comparison of the minus Hanford strain with the Livingston strain, gives
a time shift of arrival of approximately ∆t−HL = 0.0025s. When studying the comparison of the
Virgo strain with that of Livingston, and using the minus Virgo strain we found an acceptable time
shift of arrival of approximately ∆t−V L = −0.0005.

While for Hanford and Livingston strains we have used the pass band of [25,995]Hz, for the
Virgo strain we have to use the pass band of [35.3,883]Hz; due to the fact that Virgo had more
instrumental and seismic noise present.
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In Fig.20 it is shown the graph of Λ(L,−H) near the time of the event GW190521.

Figure 20: Behavior of the measure Λ(L,−H) near the time of the event GW190521; using
the relative Hanford to Livingston arrival time of ∆t−HL = 0.0025s and a window of 0.35s. For
both detectors the pass band was [25,995]Hz.

From the information of the graph in 20 , we infer a strong Λ signal for the pair (L,−H) near
the time of the event GW190521.

When comparing the Virgo signal, one has to take into account, that this detector had a higher
noise level, so that the duration of the signal has to be estimated; for which we found the value of
0.18s. Then, using the appropriate delay time, we found no signi�cant Λ signal; as it can be seen
in 21 .

Figure 21: Behavior of the measure Λ(L,−V ) near the event GW190521; using the rela-
tive Virgo to Livingston arrival time of ∆t−V L = −0.0005s and a window of 0.18s. For the
Livingston detector the pass band was [25,995]Hz. For the Virgo detector the pass band was
[35.3,883]Hz.

As already mentioned, the Virgo strain had higher levels of noise than the LIGO detectors; so
that it was somehow expected to have some di�culties when comparing the Virgo strain with the
others. In order to mitigate this issue, we have applied a low pass �lter of 350Hz to all strains,
before doing further comparisons. In Fig. 22 we show the graph of Λ(L,−V ) near the time of the
event GW190521, after applying a low pass 350Hz �lter.
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Figure 22: Behavior of the measure Λ(L,−V ) near the time of the event GW190521; using
the arrival time at Virgo relative to Livingston of ∆t−V L = −0.0005s and a window of 0.18s;
and an extra low pass �lter of 350Hz applied to both strains.

One can now see a strong signal for the measure Λ(L,−V ) relative to this new statistic. It must
be stressed that when applying the extra low pass 350Hz �lter, one is changing the statistics, so
that the maximum value of Λ in Fig. 22 can not be compared directly with that shown in Fig.
20; which refers to the previous statistics. In fact, the corresponding maximum value of Λ(L,−H)
after applying the 350Hz �lter; is much higher that the maximum shown for Λ(L,−V ) in the same
statistic.

This event of course deserves further study, which will contribute to the localization in the sky
of the source of the signal; but here we are concerned with presenting the behavior of the measure
OM to a variety of situations, and individual event detailed studies will be carried out elsewhere.

8 Final comments

The di�culties encountered in the identi�cation of transient gravitational signals in the strains
recorded by the interferometric gravitational-wave observatories, as LIGO/Virgo, have various
facets. We have already mentioned some of them. For example, that some of the detection tech-
nique use templates, which in turn use physical assumptions that are probably not tenable for
every situation. We have also recalled the problems involved when using whitening techniques.
Another di�culty found in the detection process is the appearance of noise transients (glitches)
that could trigger false detections. For example, in reference [29] they propose a way to identify
and characterize transient noise. Also in [30] the authors present a method to identify glitches in
gravitational-wave data. Another e�ort for glitch classi�cation is presented in [31]. In relation to
the problems presented by the appearance of glitches, it can be seen from the nature of our measure
Λ, as expressed in (3), that glitches, which occurs at one observatory, will be attenuated by design.

In this work we have presented a new optimized measure OM, denoted by Λ, which we have
shown is useful for the detection of similar signals in two strains of gravitational-wave observatories.
Our measure works with the data in the time domain, so that it makes e�cient use of computer
memory resources. With the measure OM we have been able to show the detection of similar
signals in the two LIGO strains of the GW150914 event, close to the time of the event, with a
duration of about 0.5s. This is more than the 0.1s lapse of time reported in LIGO articles. It is
essential to stress that �rst we have used the pre-processing �ltering techniques More19, presented
before[12], as a starting point in the treatment of the observed data at LIGO observatories. We
have demonstrated here that after applying our �lters the strains show a behavior very close to
Gaussian.
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We have also presented the calculation of the likelihood ratio L for the detection of two similar
signals in two strains. Due to the fact that several authors use correlation coe�cients[32, 33, 34,
35, 36, 37, 38] to analyze the observed data, we have also considered in section 2 the corresponding
correlation coe�cient ρ for the two strains. In appendix B we have presented the result of applying
the correlation coe�cient to the problem we have treated here; and it was shown that it gives
information with too much noise. We have also shown that it is a weaker measure, when compared
with Λ measure; see the table below also.

The application of the measure Λ, in section 3 , to the two LIGO strains of 22s around the
GW150914 event, with a nominal time shift of -0.007s, for (-)Hanford data, and with a window of
0.5s length, gives a clean, sharp peak as a function of time; which can be assigned an unre�ned
level of signi�cance α1 = 0.0063, or a level of signi�cance α = 0.00010, by recognizing a Gaussian
behavior for the logarithm of Λ. Another way of saying this is that we can trust the hypothesis
that there is a similar signal in both strains with a 99.99% con�dence level. When comparing our
measure with the likelihood ratio L statistics and the correlation coe�cient ρ statistics, we have
shown, that among the three measures studied in section 2 , our measure Λ can be used with a level
of signi�cance, for this problem, which is more than 30 times stronger than those than can be used
with the likelihood ratio L or the correlation coe�cient ρ. When applying the measure Λ to the
two LIGO strains of 40s around the GW150914 event, the behavior of the measure OM improves;
because now the level of signi�cance is α = 4.0e− 05; and the relation with the other two measures
also improves, since now they give signals that are more than 50 times weaker than our measure,
as shown en subsection 3.4 . This suggests the preference for the use of the measure OM.

We have also take the opportunity in section 3 to study the e�ects on the statistics after
whitening the strains. We have seen that if one follows the procedures, as suggested in LIGO
tutorials, one is left with a strain that is far from a Gaussian aspect. Only after trimming the
extremes of the strains, one is left with data that is close to a Gaussian behavior; as shown in Figs.
5 , 6 and 7 . However we have also shown, in subsection 3.3, that the statistics of the optimized
measure applied to the whitened data, does not show a Gaussian behavior, and therefore one can
not apply this methods in this case. This unwanted behavior is also observed with the other two
measures.

In the detailed study of event GW150914, we have shown that it is possible to �ne tune the
choice of the lapse of time considered, in order to maximize the response for the level of signi�cance;
as we demonstrated in subsection 3.2 . Naturally this �ne tuning can be done for each event; which
we avoid here in order to present examples of �rst approach to di�erent events.

To check the behavior of the measure OM with the strains of other events, we have also applied
a 22s study to the events: 151012_2, GW151012, GW170104 and GW190521 in sections 4 , 5 , 6
and 7 respectively. For each of these other cases we have also carried out preliminary studies in
which we have checked minimal Gaussianity, basic behavior in the time domain, phase behavior,
amplitude spectral density behavior and others; that we do not include in the text, in order to keep
the presentation focused on the measure OM response in di�erent situations.

The 151012_2 has been presented as a release of type `GWTC-1.marginal', and our study also
did not show any signal in the Λ graph.

Event GW151012 has been presented as a release of type `GWTC-1-con�dent' with a network
SNR of 9.3; which showed very low levels of signals. From the preliminary comparison of the
strains with the ∆t−HL value of -0.0006s suggested by LIGO, we could not found a signal in the Λ
graph. After further study we discovered that the value ∆t−HL = −0.0012s yields a weak signal
of the measure OM, using a signal duration of 0.8s; which is longer than the 0.5s LIGO suggested
duration.

The event GW170104 has been presented as `GWTC-1-con�dent' of the second observing run,
with a network SNR of 13.8. In this case, the signal was very strong and our optimize measure OM
was able to assign a level of signi�cance of α = 5.46× 10−8. For this statistics we have used a time
duration of 0.28s, instead of the 0.1s shown in the published data[28]. Thus, the optimize measure
OM can be used to test the duration of the signal for each event.
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The case of event GW190521 is of special interest because the Virgo detector was also in oper-
ation at that time. This event was released as of type `GWTC-2.1-con�dent', with its version v4 of
data. In comparing the di�erent data version we found unexplained �ltering, so that we have de-
cided to work with version v1 of the strains, which was released as of type `O3_Discovery_Papers'.
The GW190521 event was assigned the network SNR of 14.3 and a duration of approximately
0.1s[9]. Our study instead shows a duration of approximately 0.35s; which we have used in our
work. Although the Λ(L,−H) gave a strong signal, the initial settings did not show any signal for
the Λ(L,−V ). We found a signal after applying a low pass �lter of 350Hz to the strains, since the
spectrograms show that the signals where below this threshold. This case showed that the optimize
measure OM can be used even in problematic situations; in which more care has to be taken to
analyze the strains.

We have not pursued here any further the deserved individual detailed studies for each event,
since we are only concerned here with the presentation of the optimized measure OM. For this
reason we have only presented here the �rst approach of the application of the measure OM to a
variety of events with di�erent characteristics and of all three �rst LIGO/Virgo runs.

Note that in this work we have not attempted to determine the exact functional form of the
gravitational wave; since all the information comes from the comparison of the strains through the
use of our measure Λ; after preparation with the above mentioned pre-processing �ltering technique.

In table 1 we show the comparison of our measure OM with the other two widely known and used
measures, the likelihood ratio L and the correlation coe�cient ρ. Since one might feel uncomfortable
with recognizing a Gaussian behavior for the measures, we also include the indisputable weaker level
of signi�cance α1; calculated in terms of the direct Chebyshev inequality1, and having an undeniable
probabilistic interpretation. It can be seen that even using only this more conservative and so weaker
index, the measure OM is much stronger than the other two considered. In fact, only using the
conservative version one obtains excellent con�dence levels, since all con�dence coe�cients are of
the order of 99%; as it can be seen in table 2 .

events
level of signi�cance α1 level of signi�cance α
(Chebyshev inequality) (Gaussian statistics)
Λ L ρ ln(Λ) ln(L) ρ

GW150914 6.32e-03 nan 1.36e-01 (22) 1.047e-04 3.708e-03 (35) 3.384e-03 (32)
GW151012 1.21e-02 nan 1.40e-01 (12) 3.418e-04 4.031e-03 (12) 3.796e-03 (11)
GW170104 1.67e-03 nan 5.67e-02 (34) 5.462e-08 1.489e-05 (273) 1.347e-05 (245)
GW190521 2.11e-03 nan 6.46e-02 (31) 2.719e-07 5.416e-05 (199) 4.184e-05 (154)

Table 1: Comparison of the three measures for di�erent events and two levels of signi�cance.
The signi�cance α1 denotes the unre�ned level of signi�cance calculated from Chebyshev in-
equality; and the signi�cance α is calculated with the Gaussian statistics. In parenthesis we
show how weak is the measure with respect to the measure OM. The `not a number' sign `nan'
is due to the appearance of over�ows in standard calculations.

1We show in Appendix C that one can trust three signi�cant �gures for the strain size considered. But for a more

precise bound, we also provide in the appendix a corresponding inequality for a sample.
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events
con�dence coe�cient γ
(Chebyshev inequality)

GW150914 0.99368
GW151012 0.9879
GW170104 0.99833
GW190521 0.99789

Table 2: Conservative con�dence coe�cients for detections for di�erent events, from the
measure OM.

Summarizing our work; we have started by developing the likelihood ratio strategy applied
to the detection of a similar signal in two time series, and found that this measure has some
di�culties involving very big exponents, and undesirable numerical over�ow errors. Then, in order
to circumvent the likelihood ratio problematic, we have de�ned the optimized measure OM; which
turned out to be stronger than the likelihood measure and the correlation coe�cient signals. The
comparison has been done in two ways; by direct application of Chebyshev inequality on the bare
quantities and, recognizing a Gaussian behavior of the exponents, using the standard normal level
of signi�cance. The superiority of the optimized measure OM is demonstrated in tables 1 and 2
above. The measure OM depends on several characteristics of the strains, and its values have to be
understood in terms of the local statistic of the strains. We have also shown that it can be applied
to a variety of real data, by covering �ve events, with very di�erent signal characteristics, belonging
to the observing runs O1, O2 and O3. In all these cases the measure OM gives reasonable and
sensitive signals, including the detection in the Virgo strain of a very low level signal. Therefore, it
has been shown in this article that the measure OM is a powerful versatile tool in post-detection
studies.

We plan to use this measure in a variety of situations, and we expect that it will become useful
in checking possible gravitational lensed black hole mergers by providing a new approach to this
problem.
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A Arguments to build the measure

A.1 Detection of a known signal

We here recall the basics of the likelihood method as applied to one set of data following the
notation of [15].

Samples of white Gaussian noise taken by an instrument having a bandwidth W = 2π∆ν will
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be Gaussian random variables with the probability density function (p.d.f.)

p1(x) =
1√

2πN0
e
− x2

2N0 , (8)

with

N0 =
NW

2π
= N∆ν; (9)

where N is the unilateral spectral density. The joint p.d.f. of samples x1, x2, ..., xn at times
t1, t2, ..., tn separated by intervals much longer than 2π/W will be statistically independent, given
by

p(x1, t1;x2, t2; ...;xn, tn) =
n∏
k=1

p1(xk) =
1

(2πN0)n/2
e

(
− 1

2N0

∑n
k=1 x

2
k

)
. (10)

In treating the detection of signals in the presence of this kind of noise, we shall imagine sampling
the random processes by an instrument whose bandwidth is much greater than that of any of the
signals involved. We can then apply eq. (10) to the values of the noise at times t1, t2, ..., tn that
are arbitrarily close.

Let s(t) be a signal superimposed on a Gaussian noise n(t); so that one observes

v(t) = n(t) + s(t), (11)

in the interval 0 < t < T . The hypotheses H0 is that the signal is not present, and the hypotheses
H1 is that the signal is present in the observation v.

The observations are made at n uniformly spaced times tk = k∆t = k Tn , with k = 1, 2, ..., n; with
values vk = v(tk). The observations for the two possibilities are described by the joint probability
density functions p0(v) = p0(v1, v2, ..., vn) and p1(v) = p1(v1, v2, ..., vn) under the hypotheses H0

and H1 respectively. The observer's decision is best made on the basis of the likelihood ratio,

L(v) = L(v1, v2, ..., vn) =
p1(v)

p0(v)
. (12)

Its value for the data at hand is compared with a �xed decision level L0; if L(v) < L0 the observer
decides that there is no signal present.

It is assumed that the measurements of v(t) at times tk are made by an instrument of such a
large bandwidth that however small the intervals ∆t between them, their outcomes have statistically
independent noise components. Then, under hypothesis H0 their joint probability density function
is

p0(v) =
1(

2πN0

)−n/2 exp
(
−

n∑
k=1

v2
k

2N0

)
, (13)

with N0 = N W
2π .

When the signal is present, the part of the observed vk due to the noise is vk − sk, with
sk = s(tk) a sample of the signal. Therefore, the data vk should behave as independent Gaussian
random variables with mean values sk and variances N0, namely, under hypothesis H1 the joint
p.d.f. of the data is,

p1(v) =
1(

2πN0

)−n/2 exp

(
−

n∑
k=1

(vk − sk)2

2N0

)
. (14)

The likelihood ratio, eq. (12), now becomes

L(v) = exp

(
n∑
k=1

2sk vk − s2
k

2N0

)
. (15)
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The observer chooses hypothesis H0 if L(v) < L0 or, because of the monotone character of the
exponential function, if

∆t

n∑
k=1

sk vk <
1

2
∆t

n∑
k=1

s2
k +N0∆t lnL0. (16)

Hence the observer can base the decision on the value of the quantity

Gn = ∆t
n∑
k=1

s(tk) v(tk), (17)

comparing it with some �xed amount Gn0 determined by some criterion. In the n-dimensional
Cartesian space with coordinates vk, the decision surface D is a hyperplane

n∑
k=1

s(tk) v(tk) = constant, (18)

which is perpendicular to the vector with components sk.
It can be seen that the natural inner product of the expected signal and the strain, that we

denote by < v, s >=
∑n

k=1 s(tk) v(tk), is the basic quantity of the likelihood calculation. And
if < s, s > can be neglected in front of < v, s >, or if one only concentrates in the functional
dependence on the data, one arrives at the working expression for the likelihood to be

L(v) = exp

(
< v, s >

N0

)
; (19)

where for the sake of simplicity in this presentation, we are assuming a constant N0, although the
expressions can easily be generalized. Normally, N0 is measured from the local properties of the
data, close to the time of the event under study.

In actual situations, in which the expected signal has some characteristic length in time, one
does not use the natural inner product but a convolution of it with an appropriately chosen window
w, with a width of the order of the characteristic length of the signal. So that one actually works
with the de�nition:

< v, s > (tj) =
∑
k

v(tk) s(tk)w(tj − tk). (20)

In this way one samples the data with an appropriate width.
The likelihood method is used by the LIGO/Virgo Collaboration as a standard way to obtain

the matched templates to the observed signals[14, 21].

A.2 The case of the same or similar unknown signal in two

detectors

To simplify the notation we are going to omit when possible the index denoting the time variation.
Let one detector observe the data v1, which is supposed to contain the signal s1 in the presence of
the noise n1, and similarly for the other detector so that

v1 = n1 + s1, (21)

and
v2 = n2 + s2; (22)

but for a moment let us consider �rst the basic assumption that both detectors contain the same
signal (Although it also applies to similar signals s2 = s1 + ε, for some small ε, as we will show
below.)

s1 = s2 = s. (23)

24



Then one can express

n1 = v1 − s = v1 − v2 + n2; (24)

so that instead of (14) now we will have

p1(v1, s1) =
1(

2πN01

)−n/2 exp

(
−

n∑
k=1

(v(1)k − v(2)k + n(2)k)
2

2N01

)
; (25)

where v1 = (v(1)1, v(1)2, ..., v(1)k, ...) denotes the complete strain of detector 1. In this situation,
hypothesis 1 is that detector 1 have recorded the same signal as detector 2, and hypothesis 0 is
that detector 1 has not recorded the signal.

Similarly for detector 2 one also has

p2(v2, s2) =
1(

2πN02

)−n/2 exp

(
−

n∑
k=1

(v(2)k − s(2)k)
2

2N02

)
. (26)

Assuming the statistical independence of the measuring process in the two detectors we arrive
at the joint probability from the product of the probabilities calculated for each detector; namely

p(v1, s1,v2, s1) =
1(

2πN01

)−n/2 exp

(
−

n∑
k=1

(v(1)k − v(2)k + n(2)k)
2

2N01

)
1(

2πN02

)−n/2 exp

(
−

n∑
k=1

(v(2)k − v(1)k + n(1)k)
2

2N02

)
.

(27)

Note that also (25) can be understood as the conditional probability that detector 1 has observed
signal s given that detector 2 has observed signal s. (See section 2.4 of [16].) Then, using Bayes'
rule[39] one would also arrive at (27).

The likelihood ratio is calculated from the quotient of p(v1, s1,v2, s1) with the corresponding
p0(v1,v2); where in p0 there is no contribution from any signal and is given by

p(v1,v2) =
1(

2πN01

)−n/2 exp

(
−

n∑
k=1

(v(1)k)
2

2N01

)
1(

2πN02

)−n/2 exp

(
−

n∑
k=1

(v(2)k)
2

2N02

)
.

(28)

This quotient has the form of a product L1 L2.

Let us start by calculating the likelihood L1 considering just one of these factors, and, as above,
using s1 = s2, so that

L1(v1) =
p1(v1)

p0(v1)

= exp

[
n∑
k=1

2v(1)k v(2)k − v2
(2)k − 2v(1)k n(2)k + 2v(2)k n(2)k − n2

(2)k

2N01

]
.

(29)
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It is convenient to manage the algebra in the following way:

n∑
k=1

2v(1)k v(2)k − v2
(2)k − 2v(1)k n(2)k + 2v(2)k n(2)k − n2

(2)k

=

n∑
k=1

2v(1)k v(2)k − v(2)k(v(1)k + n(2)k − n(1)k)− 2v(1)k n(2)k + 2v(2)k n(2)k − n2
(2)k

=

n∑
k=1

2v(1)k v(2)k − v(2)kv(1)k − v(2)kn(2)k + v(2)kn(1)k

− 2(s(1)k + n(1)k) n(2)k + 2(s(2)k + n(2)k) n(2)k − n2
(2)k

=

n∑
k=1

v(1)k v(2)k − (s(2)k + n(2)k)n(2)k + (s(2)k + n(2)k)n(1)k

− 2(s(1)k + n(1)k) n(2)k + 2(s(2)k + n(2)k) n(2)k − n2
(2)k

=
n∑
k=1

v(1)k v(2)k − s(2)kn(2)k − n2
(2)k + s(2)kn(1)k + n(2)kn(1)k

− 2s(1)kn(2)k − 2n(1)k n(2)k + 2s(2)kn(2)k + 2n2
(2)k − n2

(2)k

=
n∑
k=1

v(1)k v(2)k + s(2)kn(1)k + s(2)kn(2)k − 2s(1)kn(2)k − n(1)k n(2)k.

(30)

In this algebraic manipulation we have kept the identities of s1 and s2 to allow for the situation
s2 = s1 + ε, with max |ε| � max |s1|.

Since by assumption the noises n1 and n2 are considered to have independent Gaussian behavior;
we can take the size of the interval big enough so that we attain

n∑
k=1

s(2)kn(1)k ≈
n∑
k=1

s(2)kn(2)k ≈
n∑
k=1

s(1)kn(2)k, (31)

and therefore
n∑
k=1

s(2)kn(1)k +

n∑
k=1

s(2)kn(2)k − 2

n∑
k=1

s(1)kn(2)k ≈ 0, (32)

and we also have
n∑
k=1

n(1)k n(2)k ≈ 0. (33)

So that we arrive at

L1(v1) = exp

[
n∑
k=1

v(1)k v(2)k

2N01

]
; (34)

for the likelihood of having the signal s in v1 that is contained in v2. From the considerations above,
we deduce that the joint likelihood of having the same signal in both detectors is then

La(v1,v2) = exp

[
1

2

( 1

N01

+
1

N02

) n∑
k=1

v(1)k v(2)k

]
; (35)

where in practical situation we evaluate N0 from the sample variance so that the �nal expression is

L(v1,v2) = exp

[
m− 1

2

( 1∑m
k=1 v

2
(1)k

+
1∑m

k=1 v
2
(2)k

) n∑
k=1

v(1)k v(2)k

]
; (1)
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where the width of the window to calculate σ2, that is m, is chosen appropriately depending on the
nature of the observations vk, and we are assuming that the means are zero.

This estimation of the desired measure have some di�culties. The exponent is huge, when
using actual LIGO data, and it does not emphasize the comparison of the data in both strains. To
understand this in detail, let us see what is the behavior of the logarithm of this measure, when it
is applied to the data of GW150914 after post-processing[12], which we shown in �gure 23 ; where
we have advanced the time axis by the width of the window.

Figure 23: Logarithm of the likelihood ratio applied to the strain at Livingston and the one
at Hanford from -10s to 10s around the time of the event GW150914 with the nominal shift of
-0.007s.

A.3 The new measure

Due to the unpleasant behavior of the likelihood ratio discussed above, we decide to de�ne a new
measure and so we introduce some changes to the likelihood ratio to strengthen the comparison
and to moderate the amplitude, so that it becomes useful for the system we have in mind.

To motivate our choice, let us note that for pure and independent noise one has

(n1 − n2)2 = (n1)2 + (n2)2 − 2(n1n2) = (n1)2 + (n2)2 = σ2
1 + σ2

2. (36)

Also note that when both variances are similar, then one has that 1
σ2
1

+ 1
σ2
2
is approximately 4

σ2
1+σ2

2
.

So that instead of 1
N01

+ 1
N02

we can use the estimation 4

(v1−v2)2
; which has the advantage that

v1 − v2 would cancel the information of the signal; and therefore help in accentuating the measure
at the time of coincidence.

Then, in order to control this too sensitive behavior, we moderate the measure to be

Λa(v1,v2) = exp

[
1

σ∗12

( 1∑m
j=1(v(1)j − v(2)j)2

) n∑
k=1

v(1)k v(2)k

]
, (37)

where σ∗12 is the standard deviation of
(

1∑m
j=1(v(1)j−v(2)j)2

)∑n
k=1 v(1)k v(2)k in the lapse of time of

interest.
Employing the notation of the inner product as in (20), which makes use of the window w, we

arrive at the �nal expression for the measure given by

Λ(v1,v2) = exp

[
1

σ∗12

< v1,v2 >

< (v1 − v2), (v1 − v2) >

]
; (38)
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where σ∗12 is calculated with the window w also.

This measure gives reasonable results with actual LIGO data.

B Behavior of the correlation coe�cient

A natural question is whether the correlation coe�cient between the two set of data coming from
both detectors, is enough to have a well behaved measure for determining if there is a common
signal in the strains. For this reason we here present the graphs that show the behavior of the
coe�cient:

ρv1,v2 ≡
< v1,v2 >√

< v1,v1 >< v2,v2 >
; (4)

where we are assuming zero average for both strains. This measure is also called the sample
correlation coe�cient[15].

Figure 24: On the left the correlation coe�cient between the strain at Livingston and the
one at Hanford from -10s to 10s around the time of the event. On the right the exponential of
the correlation coe�cient in the same lapse of time.

In �gure 24 it is shown the behavior of the correlation coe�cient, where we have made use of
the same window employed for the Λ measure, and where we have advanced the time axis by the
width of the window. We also show the behavior of the exponentiation of the correlation coe�cient,
to see if the relation was augmented; but it can be seen that although there is a local maximum
close to the time of the event, both graphs give information with too much noise. So, comparing
this with the cleaner behavior of our measure Λ, as shown in �gure 8 , we choose Λ; which provides
a much better tool for analysis.

C Chebyshev inequality for a sample

The case of a sample has been considered in reference [40], and based on this, in [41] it was presented
the following inequality. Let r ≥ 2 a �xed integer, Y1, Y2, ..., Yr andX a weakly exchangeable sample
(e.g. identically and independently distributed (i.i.d.), but not necessarily) from some unknown
distribution such that P (Y1 = Y2 = ... = Yr = X) = 0, and λ ≥ 1. Denote Ȳ = 1

r

∑r
i=1 Yi and

V ar(Y ) = 1
r−1

∑r
i=1(Yi − Ȳ )2 the sample mean and variance respectively, and Q2 = r+1

r V ar(Y ).
Then,

P (|X − Ȳ | ≥ λQ) ≤ 1

r + 1

⌊
r + 1

r

(r − 1

λ2
+ 1
)⌋

; (39)

where the notation is: bxc is the largest integer less than x.
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In order to relate to equation 6, let us de�ne t by λQ = tσ; where σ is the sample standard

deviation. Then, one has λ
√

r+1
r = t; so that, using

1

r + 1

⌊
r + 1

r

(r − 1

λ2
+ 1
)⌋

=
1

r + 1

⌊
r + 1

r

((r − 1)(r + 1)

rt2
+ 1
)⌋

; (40)

one has

P (|X − Ȳ | ≥ tσ) ≤ 1

r + 1

⌊
(r + 1)

(
1

t2
(
1− 1

r2

)
+

1

r

)⌋
. (41)

Let us note that for 22 seconds at a sample rate of fs = 16384, one would have r = 360448; so

that 1
r = 2.77432×10−6 and 1

r2
= 7.69688×10−12. Let us de�ne g(r, t) = 1

r+1

⌊
(r + 1)

(
1
t2

(
1− 1

r2

)
+ 1

r

)⌋
.

In Fig. 25 we shown the graph of the relative di�erence of inequality 41 with 6 for the range of t
in (2, 30); which covers the values for the cases studied here.

Figure 25: Relative di�erence of sample inequality and original inequality.

It is deduced that in the range t ∈ (2, 30) one can safely trust at least three signi�cant �gures
of the original inequality for this size of sample; which we have tested numerically for the events
considered.
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