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Using two different approaches, we study imaging in the strong-lensing regime taking into account the
effects of plasmatic environments on light propagation. First, we extend the use of a perturbative approach
that allows us to quickly and analytically calculate the position and shape of the images of a circular source
lensed by a galaxy. Such an approach will be compared with that obtained from the numerical solution of
the lens equations. Secondly, we introduce a three-dimensional spheroidal model to describe the spacetime
associated with the dark matter halo around the lens galaxy and an associated optical metric to incorporate
the presence of the plasma medium. The (chromatic) deformation on caustic and critical curves and
associated multiplicity of images is also analyzed for particular configurations.
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I. INTRODUCTION

In general, in the optical geometric limit, electromag-
netic radiation propagates along nongeodesic curved tra-
jectories when interacting with an in-homogeneous optical
medium, as opposed to the geodesic paths in the gravity
pure case. While such optical phenomena are well-known
in Earthbound laboratories, analogous optical effects have
also been observed to occur in astrophysical scenarios
across the electromagnetic spectrum. Due to rays passing
through an intervening optical medium, a viewer may
observe multiple images of distant objects, distorted and
apparently shifted from their true locations. In fact, such
cosmic lensing scenarios can display both converging and
diverging behavior depending on the nature of the lenses
involved.
Gravitational lensing occurs when light rays passes by a

massive object. In this case, the curvature of spacetime
behaves as an effective optical medium that depends
on the derivatives of components of the metric of the
spacetime produced by the lens [1–3]. As an example, an
isolated point mass generally behaves like a converging
lens, acting to magnify a well-aligned distant source.
Since all frequencies of radiation are affected equally
by spacetime curvature, gravitational lensing effects are
achromatic. At present, gravitational lensing is known on
many scales, ranging from microarcsecond images arising
from individual stellar lenses [4] to galaxies [5] and entire
galaxy clusters [6].
In contrast to gravitation, the ionized matter of the

interstellar medium (ISM) may also act as an optical

medium affect our view of distant objects, albeit an optical
medium with vastly different properties than gravitational
fields. The plasma component of the turbulent and clumpy
ISM may obscure background radio sources, causing
demagnification analogous to a diverging lens [7]. Due
to the frequency dependence of the plasma dispersion
relation, the lensing effect of plasma lenses are chromatic,
strongly altering the paths of radio waves [8–12]. It is
believed that such plasma structures are responsible for
extreme scattering events (ESEs) [13,14], in which the flux
density of radio-loud background sources (1 GHz) are
observed to dim by large amounts (exceeding 50%) [15].
The ESE phenomena may also be closely related to pulsar
scintillation, which has been the motivation behind many
exotic plasma distributions beyond simple spherical sym-
metry such as filaments [16,17] and sheets of ionized
matter [18,19]. In fact, plasma lenses do not display
exclusively diverging optical behavior, since they can also
be underdensities in an overdense background. Such ‘pits’
then behave like converging chromatic lenses [20]; how-
ever, recent observations seem to exclude this possibility at
least for a subset of observed ESEs [14]. One of the most
striking observations of plasma lensing has occurred due
to the observation of a black widow pulsar through the
ablated wind of its companion [21,22]. Plasma lenses
have also been suggested to affect the propagation of
fast radio bursts [23,24]. Therefore, plasma lenses are
highly relevant to topics on the leading edge of astrophys-
ics. However, many aspects of these phenomena remain
mysterious, in particular the small physical extent of spheri-
cally symmetric models suggest extremely large central
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densities [15]. Therefore, further study of these enigmatic
structures is necessary.
In this work we are interested in the study of lens

effects produced by the presence of plasma in strong-
lensing situations, that is, when multiple source images
are produced and they are highly distorted. Some studies
on strong gravitational lensingþ plasma phenomena have
been previously analyzed by various authors; for example
to analyze how the presence of plasma atmospheres
in neutron stars affects the luminosity curves [25–28],
or the shadow of black holes [29–35] (strong-lensingþ
strong-field effects); or even to the study of arc lensing
formation (through ray tracing numerical integration)
when the acting lenses are formed by galaxies [36], or
in a situations of microlensing [37,38] (strong lensingþ
weak field). Note that as in [36] the ray tracing integration
has been carried out numerically, it is difficult in many
situations to make a more detailed study of how the
different parameters that describe the plasma affect the
formation of images and their multiplicity. It is our
intention to contribute with a more detailed study on the
effect of plasma in galaxies on images from distant sources,
for which we will present a series of contributions: (a) we
analyze more generic plasma models than those usually
studied that are spherically symmetric; (b) we present a
perturbative formulation of the solutions to the lens
equation, when in addition to the gravitational field, the
presence of plasma is taken into account, which will allow
us to give analytical formulas to describe the images;
(c) a lens given described by a three-dimensional spheroi-
dal model and the study of light rays in the strong-lensing
regime.
This paper is organized as follows. In Sec. II we present

the basic equations and an extension of a perturbative
method to solve the lens equations originally introduced
by Alard [39] for the gravitational pure case. We also
present a general formula for an iterative solution of the
perturbative equations. In Sec. III we present the models
for the gravitational potentials and plasma profiles, and
their effect on the lensed images. In Sec. IV we carry out a
comparison between the analytical and the numerical
solutions and the improvement that successive iterations
can produce. In Sec. V we describe the critical and caustic
curves and the multiplicity of the images for the consid-
ered models. In Sec. VI we change our approach,
introducing a full four-dimensional metric describing a
3D spheroidal model for the dark matter halo of the galaxy
that act as a lens. Different optical scalars, critical and
caustic curves and images of the lensed sources are also
studied.
Throughout this paper we assume flat ΛCDM cosmol-

ogy with Ωm ¼ 0.315, and H0 ¼ 67.4 km s−1
Mpc , based on the

observations of the Planck Collaboration [40]. In addition,
we consider a lens and a source with redshift zl ¼ 0.04 and
zs ¼ 0.1, respectively.

II. BASIC EQUATIONS

In the thin lens approximation, the lens equation relating
the positions of the source to those of the images through
the angle of deflection and can be written as follows:

β⃗ ¼ θ⃗ − α; ð1Þ

where β⃗, θ⃗ denote the angular position of the source and of
the image, respectively, and α is related to the deflection
angle α̂ by α ¼ Dls

Ds
α̂. In addition, Dl, Ds, and Dls indicate

the angular-diameter distance of the observer to the lens,
the observer to the source, and the lens to the source.
Let us consider as a model for the lens a static and

asymptotically flat spacetime, with coordinates fx0; xig,
with xi, i ¼ 1..3 being spacelike coordinates. On the other
hand, we will also consider in this section that the spatial
components of the energy-momentum tensor are negligible,
so the gravitational lens (not counting the plasma) will be
completely described by its matter distribution. Under this
assumption the lens equation can be rewritten in terms of
the lens potential ψgrav as follows:

β⃗ ¼ θ⃗ −∇θ⃗ψgravðθ⃗Þ; ð2Þ

which is related to the deflection angle α through
αðθ⃗Þ ¼ ∇θ⃗ψgravðθ⃗Þ, where ∇θ⃗ is the gradient with respect

to angular position θ⃗ in the lens plane. We refer ψgrav as the
effective lensing potential and it is related to the Newtonian
potential Φ as follows:

ψgravðθ⃗Þ ¼
Dls

DlDs

2

c2

Z
ΦðDlθ⃗; xÞdx; ð3Þ

being x the line-of-sight distance between the observer and
the source.
Since we are interested in the average plasma medium

surrounding galaxies, for our purposes, it will suffice to
consider it as a cold, nonmagnetized plasma. Neglecting the
birefringence effects of galactic magnetic fields is based
on the assumption that they are generally expected to be
of very low intensity (of the order of a few μG [41]), and
therefore their effects on image formation will be negli-
gible. However, they could be considered if one wishes to
study the polarization of light due to the Faraday rotation
effect [42]. In turn, magnetic fields must be taken into
account in situations of plasma lensing in the vicinity of
compact objects. In that situations, the plasma lensing
effect can be useful in constraining the value of magnetic
fields [43].
As the observation frequencies will generally be higher

than the associated plasma frequencies, the ISM can be
considered an electromagnetic continuous medium with an
associated refractive index [23,44–46].
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n2ðxÞ ¼ 1 −
ω2
eðxiÞ

ω2ðxiÞ ; ð4Þ

where ωðxiÞ is the frequency of the light ray at xi and the
electron plasma frequency ωeðxiÞ is related to the electron
number density neðxiÞ as follows:

ω2
eðxiÞ ¼

4πe2

m2
e
neðxiÞ; ð5Þ

where e and me are the electron charge and the electron
mass, respectively.
In analogy with the gravitational lensing theory, the

cold nonmagnetized plasma effect on the light rays can be
codified in a frequency-dependent effective potential [13],

ΦðxiÞ ≈ c2ω2
eðxiÞ

4ω2ðxiÞ : ð6Þ

In Eq. (6) we use the large observational frequency limit,
ω ≫ ωe, which is suitable in general astrophysical situa-
tions. In turn, on its way from the source to the observer,
the light will experience a gravitational redshift due to the
presence of the lens and a cosmological redshift, the former
being negligible with respect to the latter because the lens-
observer distance is large enough. For this reason we will
only take into account the effect of the cosmological
redshift so that the frequency of the photons in the position
of the lens will be ð1þ zlÞω, where zl is the cosmological
redshift of the lens and ω is the observational measured
angular frequency.
Considering a light ray propagating through the plasma

in a x̂ direction, the electron column density Ne is given by
the following expression usually known as dispersion
measure,

Neðθ⃗Þ ¼
Z

neðxiðxÞÞdx; ð7Þ

which can be estimated from time-delay measurements.
Finally, the effective lensing potential in terms of the
observational frequency ω, the effective lensing potential
is given by [13],

ψplasmaðθ⃗;ωÞ ¼
Dls

DsDl

2πc2

ω2ð1þ zlÞ2
reNeðθ⃗Þ; ð8Þ

where re ¼ e2

mec2
is the classical electron radius and the

observation frequency ν measured in Hz is related to ω by
ν ¼ ω

2π. Therefore, the total deflection angle will be given

by αðθ⃗Þ ¼ ∇θ⃗ðψgravðθ⃗Þ þ ψplasmaðθ⃗;ωÞÞ. Note that the total
deflection angle in this approximation is curl free. Hence,
the associated optical scalars can be described by the shear
and convergence as in standard gravitational lensing theory.

It is also worth mentioning that, in contrast to the
convergent effect on light rays produced by gravitational
fields, plasma lensing can produce a divergent effect if
there is an overdensity of electronic charge with respect to
the ISM. In contrast, plasma lenses that are underdense
compared to the surrounding ISM will produce converging
lenses and magnify background sources.
It is important to note that in this work we will not

consider the plasma-gravity interaction which in the sit-
uations under consideration is negligible compared to the
pure gravity contribution as well as the pure plasma one.

A. Perturbative solution of the lens equation

In the following we will briefly review a perturbative
solution of the lens equation in the strong gravitational-
lensing regime that is often accurate for describing gravi-
tational arcs as well as multiple images. This method
introduced by Alard (see [39]) starts from an exact solution
of the gravitational lens equation for a point source aligned
with the line of sight for a spherically symmetric lens,
resulting in a circular image of the source generally known
as Einstein ring.
Let us consider a circular source with (angular) radius

δβs centered at ðδβ10; δβ20Þ in the source plane. Explicitly,

δβ⃗ ¼
�
δβ1

δβ2

�

¼
�
δβ10 þ δβs cosϕs

δβ20 þ δβs sinϕs

�
; with 0 ≤ ϕs ≤ 2π: ð9Þ

On the other hand, each point at the boundary of the source
will have an image position θ⃗ that can be written as

θ⃗ ¼
�
θ1

θ2

�
¼

�
θ cosϕ

θ sinϕ

�
; with 0 ≤ ϕ ≤ 2π; ð10Þ

with θ ¼ jθ⃗j depending on ϕ.
Therefore, in a gravitational lensing system where the

effect of the plasma surrounding the lens is also taken into
account, the lensing equation is given as follows:

δβ10 þ δβs cosϕs ¼ θ cosϕ − cosϕ
∂ψ

∂θ
þ sinϕ

θ

∂ψ

∂ϕ
; ð11Þ

δβ20 þ δβs sinϕs ¼ θ sinϕ − sinϕ
∂ψ

∂θ
−
cosϕ
θ

∂ψ

∂ϕ
: ð12Þ

where

ψ ¼ ψðθ;ϕÞ ¼ ψgravðθ;ϕÞ þ ψplasmaðθ;ϕÞ: ð13Þ

In particular, these equations imply the following [47],
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θ ¼ δβ10 cosϕþ δβ20 sinϕþ ∂ψ

∂θ
�

ffiffiffiffiffiffiffiffiffiffiffi
Δexact

p
; ð14Þ

with

Δexact ¼ δβ2s −
�
1

θ

∂ψ

∂ϕ
− δβ10 sinϕþ δβ20 cosϕ

�
2

: ð15Þ

Note that Eq. (14) is an exact and implicit equation for θ.
We will now review the perturbative method introduced

by Alard to solve the lens equation and we will present a
new iterative expression that improves its first order
approximation. It should be noted that this method was
presented in the case of pure gravity and here we are
extending it to the case with plasma.
Let us start by considering a spherically symmetric lens

characterized by a lens potential ψ0ðθÞ around the line of
sight. This potential can have the contribution of both
gravitational field and the plasmatic medium. Let us
consider a point source located along the line of sight at
β⃗ ¼ 0. In this situation the lens equation reduces to

θ −
∂ψ0ðθÞ
∂θ

¼ 0: ð16Þ

We denote its solutions as θp. In the pure gravity case,
these solutions are known as the Einstein radius and wewill
denote them as θE or jθ⃗Ej. As we will see, the solution θp
will also have a ring shape in the image plane, but we will
reserve the term Einstein ring for the pure gravity case.
On the other hand, we will work with mass and plasma

profiles that are commonly used in astrophysics and that
present these two characteristics: (a) there is a solution to
Eq. (16) and (b) they present a unique circular solution in
the plane of the images (the Einstein ring in pure gravity
case). Other plasma profiles, different from those used in
this work, allow us to obtain several of these circular
solutions to Eq. (16), such as polynomial plasma models
[37]. Although the perturbative method presented in this
section does not present any impediment to treat these
cases, we will leave its study for later works.
Let us now consider a small deviation in the position of

the source as well as in the circular symmetry of the lens
potential, that is, we will introduce a small ellipticity in the
lens potential,

β⃗ ¼ δβ⃗;

ψðθ⃗Þ ¼ ψ0ðjθ⃗jÞ þ δψðθ⃗Þ: ð17Þ

We will also assume that these small deviations in the
circular symmetry and in the position of the source will
imply a small deviation of the background solution, which
presents a circular shape in the plane of the images. Then
introducing the following decomposition,

θ⃗ ¼ θ⃗pE þ δθ⃗; ð18Þ

the lens equation can be rewritten as

δβ⃗ ¼ θ⃗pE þ δθ⃗ −∇θ⃗½ψ0ðjθ⃗jÞ þ δψðθ⃗Þ�θ⃗¼θ⃗pþδθ⃗: ð19Þ

Even more, we assume the three quantities δβ⃗,
δψðθ⃗Þ and δθ⃗ are of the same order of magnitude.
To this order the perturbed lens equation is written as
follows:

δβ⃗ ¼ δθ⃗ − ½ðδθ⃗ ·∇θ⃗Þ∇θ⃗ψ0ðjθ⃗jÞ þ∇θ⃗δψðθ⃗Þ�jθ⃗¼θ⃗p
: ð20Þ

Let us consider a circular source located at ðδβ10; δβ20Þ
with radius δβs. Explicitly,

δβ⃗¼
�
δβ1

δβ2

�
¼
�
δβ10þδβs cosϕs

δβ20þδβs sinϕs

�
; with 0≤ϕs ≤ 2π:

ð21Þ

On the other hand, the image position can be written as

θ⃗¼
�
θ1

θ2

�
¼
�ðθpþδθÞcosϕ
ðθpþδθÞsinϕ

�
; with 0≤ϕ≤ 2π; ð22Þ

with θpE ¼ jθ⃗pEj.
At leading order the two components of the lens

equations are then given by

δβ10þδβs cosϕs

¼
�
δθcosϕ

�
1−

∂
2ψ0

∂jθ⃗j2
�
− cosϕ

∂δψ

∂jθ⃗j
þ sinϕ

jθ⃗j
∂δψ

∂ϕ

�����
jθ⃗j¼θp

;

δβ20þδβs sinϕs

¼
�
δθ sinϕ

�
1−

∂
2ψ0

∂jθ⃗j2
�
− sinϕ

∂δψ

∂jθ⃗j
−
cosϕ

jθ⃗j
∂δψ

∂ϕ

�����
jθ⃗j¼θp

;

ð23Þ

and combining these equations we finally obtain,

δθ¼ 1

1− ∂
2ψ0

∂jθ⃗j2

�
∂δψ

∂jθ⃗j
þδβ10 cosϕþδβ20 sinϕ�

ffiffiffiffi
Δ

p �����
jθ⃗j¼θp

;

ð24Þ

where

Δ ¼ δβ2s −
�
1

jθ⃗j
∂δψ

∂ϕ
− δβ10 sinϕþ δβ20 cosϕ

�
2

: ð25Þ
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From (25) we can see that the region on the image plane
where the formation of images are allowed is characterized
by the condition

Δðjθ⃗j ¼ θp;ϕÞ ≥ 0: ð26Þ

B. N-iteration’s formula

In order to construct the first approximation to the
image position we started with the image at order zero
placed in θ⃗ ¼ θ⃗pE and we find the corrected images placed
at θ⃗p1 ¼ θ⃗pE þ δθ⃗p1 . This method can be easily extended to
higher orders. Assuming that the images at the (i − 1)th
iteration is known, we perturb the potentials around
these positions and computed new corrections. That is,
knowing θ⃗pi−1, we can construct a new correction given by

θ⃗pi ¼ ðjθ⃗pi−1j þ δθpi Þðcosϕ; sinϕÞ. After repetition of the
same procedure as before, we find

δθpi ¼
∂ψ0ðθÞ
∂jθj − θ þ c

1 − ∂
2ψ0

∂jθj2

����
θ⃗¼θ⃗pi−1

ð27Þ

where

c ¼
�
∂δψ

∂jθ⃗j
þ δβ10 cosϕþ δβ20 sinϕ�

ffiffiffiffi
Δ

p �����
jθ⃗j¼θpi−1

: ð28Þ

Equation (27) determines the image position in an iterative
way. As we will shown in the following, in most cases
a first iteration is sufficiently to compute in an analytical
way the (approximate) shapes and location of the images.
Despite the simplicity of Eq. (27) we have not knowledge
of a previous presentation of this formula in literature.

III. GALAXY MODELING AND IMAGE
FORMATION

In order to study the effect of plasma on image formation
as well as its influence on the structure of caustic and
critical curves we need to specify first the mass density
profile of the lens or alternatively its lensing potential, and
second its electron density profile. In the first part of this
work we will only consider galaxy lenses with an gravi-
tational elliptical lensing potential modelled by the singular
isothermal elliptical model (SIE) which is widely used to
model dark matter halos in galaxies both in the theory of
gravitational lensing and in studies of stellar dynamics. In
Sec. VI we will perform a detailed analysis of lensing effect
produced by a specific 3D spheroidal model which is an
exact solution of the Einstein equations.
SIE profile is characterized by the following lens

potential,

ψgravðθ⃗Þ ¼ θEθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2ϕ

p
ð29Þ

where η is the ellipticity, θ≡ jθ⃗j and θE ≡ jθ⃗Ej is the
Einstein ring which is given in terms of the velocity
dispersion σc as follows:

θE ¼ 4π
σ2c
c2

Dls

Ds
: ð30Þ

Regarding the electron density profile models around
galaxies, we will consider different continuous distribu-
tions. Some of these models were introduced in the
literature to fit data from other galaxies [48–50] or our
own Galaxy [51–54]. In the latter case, these models (with
different levels of sophistication) were constructed from the
dispersion measure associated to pulsars and also take into
account the contribution of the Magellanic Clouds and the
intergalactic medium. These models are very useful to
analyze distances to pulsars in our own galaxy. Moreover,
in [50], the LOFAR Multifrequency Snapshot Sky Survey
(MSSS) was used to investigate the radio continuum
spectra for a large sample of nearby star-forming galaxies
using some of the models discussed here.
In general, the observation frequency will be larger than

the plasma frequency. Therefore, the plasma environment
will produce a small difference in the position and shape of
the images with respect to the high-frequency optical limit
(pure gravity case). However, as we will see in the next
sections, for particular electron density profiles, observa-
tion frequencies and for some given orientation of the
observer, the multiplicity of images can change. We refer to
[55–57] for observational works on multiple imaging in
plasma lensing.
We will start with a spherically symmetric electron

distribution with an exponential decay and then we will
consider other less restrictive profiles.
First of all, we need to specify the coordinate system that

we will use. As we can see in Fig. 1 we have chosen the
x0-axis in such a way that it coincides with the line of sight

FIG. 1. Coordinate system used centered at the position of the
lens. The observer is placed at an angular distance Dl from the
lens. A light ray coming from the source intersect the lens plane at
an angle ϕ and at a distance (impact parameter) b ¼ Dlϕ from the
center of the lens.
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while the plane of the lens coincides with the y0z0 one. In
addition, we have defined in the same plane the angle φ as
shown and a radial cylindrical coordinates rc is defined in
the x0y0-plane (not shown). We reserve r as a spherical
radial coordinate. Then it is straightforward to check the
following relationships:

y0 ¼ b cosφ ¼ Dlθ cosφ; ð31Þ

z0 ¼ b sinφ ¼ Dlθ sinφ; ð32Þ

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ ðDlθ cosφÞ2

q
; ð33Þ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ ðDlθÞ2

q
: ð34Þ

In the next subsections we describe the plasma models we
will use in this work.

A. Spherically symmetric plasma model with
exponential decay

As a first model we will consider a spherically symmetric
electron density with exponential decay given by the
following expression:

neðrÞ ¼ n0e−r=rp : ð35Þ

The effect of this kind of plasma profiles on image
formation has already been numerically analyzed in the
past by Er and Mao in [36]. Here we will develop a
perturbative analysis. In turn, this kind of model will serve
as a seed to obtain the dispersion measure in more generic
models that do not respect spherical symmetry and that will
be discussed in the next subsections. This model is inspired
by observational fits proposed in the past to study the
distribution of ions in H II regions of several galaxies. In
[48], based on observations of the galaxy M51 (a galaxy
facing the line of sight), values of the electron density
n0 ¼ 10 cm−3, and 1 kpc for the characteristic radius rp
were estimated. Although in such a galaxy r fulfills the role
of galactocentric radius, measured in the direction of the
plane that contains the galaxy, in Eq. (35) r is assumed to be
a spherical coordinate (it will be relaxed in the next
subsections).
Because of the integral (7) cannot be solved analytically

for this specific plasma model, we cannot obtain an
analytical expression for the electron column density Ne.
Far from being a limitation of this model, since such
integral can always be solved numerically, we chose to fit a
function in a suitable range in order to obtain an analytical
expression for the solution of the lens equation. Then, we
approximate the electron column density Ne as follows:

NeðθÞ ≈ An0rpe−ðθ=Bθ0Þ
C
; ð36Þ

where θ0 ¼ rp=Dl, and A, B, and C are dimensionless
parameters that we obtain from the fitting. Note that the
value of A, B, and C will depend on the particular choice of
rp. In Fig. 2 we graphically show as an example the fitting
implemented in Eq. (36) for this kind of plasma with
parameters n0 ¼ 60 cm−3 and rp ¼ 1 kpc. We see that in
the range under consideration, which corresponds to the
range where we will have images (see Fig. 3), the
implemented fitting is quite adequate with an error of less
than 0.25%, while the fitting parameters remain as follows:
A ¼ 2.003� 0.002, B ¼ 1.55� 0.01, C ¼ 1.47� 0.01.
The plasma lensing potential for this model reads,

ψplasmaðθ;ωÞ ¼
Dls

DsDl

2πc2

ω2ð1þ zlÞ2
Aren0rpe

−ð θ
Bθ0

ÞC : ð37Þ

With the intention to simplify the expressions in the
following sections we rewrite (37) as

ψplasmaðθ;ωÞ ¼ ψ2
ωe

−ð θ
Bθ0

ÞC ; ð38Þ

where

ψ2
ω ¼ Dls

DsDl

2πc2

ω2ð1þ zlÞ2
Aren0rp: ð39Þ

In order to apply the perturbative approach, we take into
account the circular symmetry of the plasma potential (in
contrast to the SIE gravitational potential), and therefore it
will be convenient to consider the perturbation on the total
projected lensing potential ψ totðθ⃗Þ (i.e., gravitational
potentialþ plasma potential) only due to the deviation
from circularity of the gravitational potential. That is, using
the notation of the previous section we set

FIG. 2. The error on the fitting is less than 0.25% in this range
for a spherically symmetric plasma model with exponential decay
and parameters n0 ¼ 60 cm−3, rp ¼ 1 kpc.
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ψ totðθ⃗Þ ¼ ψgravðθ⃗Þ þ ψplasmaðθ⃗;ωÞ; ð40Þ

ψ0ðθ⃗Þ ¼ ψgravðθ⃗Þjη¼0 þ ψplasmaðθ⃗;ωÞ
¼ θEθ þ ψplasmaðθ⃗;ωÞ ¼ θEθ þ ψ2

ωe
−ð θ

Bθ0
ÞC ; ð41Þ

δψðθ⃗Þ¼ψ totðθ⃗Þ−ψ0ðθÞ¼ θEθð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηcos2ϕ

p
−1Þ: ð42Þ

Finally, from (24), the perturbative solution of the lens
equation can be expressed as

δθ�

¼ jθ⃗Ejð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηcos2ϕ

p
−1Þþδβ10 cosϕþδβ20 sinϕ� ffiffiffiffi

Δ
p

1− ψ2
ω

θ2p
Cζe−ζð1þCðζ−1ÞÞ

;

ð43Þ

where ζ ¼ ð θp
Bθ0

ÞC, and

Δ ¼ δβ2s −
�
δβ20 cosϕ − δβ10 sinϕþ ηjθ⃗Ej sin 2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − η cos 2ϕ
p

�2

:

ð44Þ

As we have pointed out, image formation is character-
ized by inequality (26). From this condition we can
analytically analyze, for some particular cases, the regions
in the lens plane where we will have images in terms of
source and lens parameters. The first thing that we can
notice is that a spherical plasma profile will not have an
effect on the angular position of the images since Δ does
not depend on the observation frequency or on the
electronic distribution on the plasma. So the effect of
the plasma in the images position will be completely in the
radial direction.
Let us first consider the case without ellipticity (η ¼ 0)

for three different arrangements of the source position.
For the case in which the source is horizontally aligned in
the plane of the source, that is, for sources located along
the line characterized by δβ10 ≠ 0 and δβ20 ¼ 0, we see
from (44) that the images in the lens plane will be restricted
to regions sin2 ϕ ≤ ðδβs=δβ10Þ2, with 0 ≤ ϕ ≤ 2π. On the
other hand, for vertically-aligned sources, that is, for
sources located along the line δβ10 ¼ 0 and δβ20 ≠ 0,
the images will be restricted to regions where cos2 ϕ ≤
ðδβs=δβ20Þ2, with 0 ≤ ϕ ≤ 2π. Finally, within the non-
ellipticity case we can also obtain an explicit condition
for the images position for sources located along the
diagonal and antidiagonal in the source plane characterized
by δβ10 ¼ �δβ20 ≠ 0. In such case images position in
the lens plane will be characterized by the condition
sin2ðπ=4 ∓ ϕÞ ≤ 1

2
ðδβs=δβ20Þ2, with 0 ≤ ϕ ≤ 2π.

On the other hand, we can also analyze the case where
the ellipticity of the lens is extremely small (η ≪ 1) but
where the source is located at the origin of the source plane,
that is, δβ10 ¼ δβ20 ¼ 0. In this case images formation will
occur in the region of the lens plane characterized by
sin2ð2ϕÞ ≤ ðδβsηθE

Þ2, with 0 ≤ ϕ ≤ 2π.
In Fig. 3 we graphically compare the perturbative

with the numerical method with this particular
plasma model for the following lens configuration. We
consider a gravitational lens described by the parameters:
n0 ¼ 60 cm−3, rp ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3 at an
observation frequency ν ¼ 80 Mhz. The angular radius
of the Einstein ring for this configuration is θE ¼
0.555 arcsec (green line) while θpE ¼ 0.517 arcsec (black
line). The source parameters are (radius and position):
δβs ¼ 0.06θE, δβ10 ¼ 0.08θE, δβ20 ¼ 0.0. As mentioned in
the Introduction, we assume that the lens and the source are
located at zl ¼ 0.04 and zs ¼ 0.1, respectively. In this
figure we show the solution of the lens equation for pure
gravity case in red lines, while in blue lines we show the
solution for the case with plasma. In this particular case we
see that the plasma does not change the multiplicity of

FIG. 3. SIE model with spherical plasma and exponential
decay. n0 ¼ 60 cm−3, rp ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3 at
an observation frequency ν ¼ 80 Mhz. The angular radius
of the Einstein ring for this configuration is θE ¼ 0.555 arcsec
(green line) while θpE ¼ 0.517 arcsec (black line). The source
parameters are (radius and position): δβs ¼ 0.06θE, δβ10 ¼
0, δβ20 ¼ 0.0.

PERTURBATIVE AND NUMERICAL APPROACH TO PLASMA … PHYS. REV. D 107, 084041 (2023)

084041-7



images or their morphology and, in particular, we can see
that perturbative solution fully coincides with the numerical
one (gray line) for a single iteration. However, we see that
for this configuration, the main effect of the plasma is the
shift of images position in the radial direction towards the
center of the lens. It is worth mentioning that in radio
frequency observations, although they are focused on
certain centered observation frequencies, they typically
have a bandwidth, which can result in blurred images.
However, for example, the LOFAR observatory has a
bandwidth of approximately 3 MHz for observations at
140 MHz or less [58], so the position and shape of the
images will only change slightly. In this work, which aims
to study the main effects of plasma, we will omit this kind
of consideration. Nevertheless, one could use the same
analytical formulas developed here to describe the change
in position and blurring of the images.
Finally, it is important to point out that all numerical

solutions of the lens equation as well as the numerical
computation of critical and caustic curves obtained in
Secs. III, IV, and V were carried out with the multipurpose
open-source gravitational lensing Lenstronomy package
[59], which was suitable modified to include the plasma
models used in this work.

B. Exponential model for an edge-on plasma disk

Although a spherically symmetric electron distribution
in the plasma allows us to show the basic effects of the
plasma’s influence on image formation, it may not be a
sufficiently realistic model, so it is also worth studying
electronic distributions that respect other symmetries. In
this subsection we will consider a electron distribution with
azimuthal symmetry about the z0-coordinate axis. In this
case it is convenient to work with cylindrical coordinates in
such a way that the electron density in the plasma only
depends explicitly on the z0 and rc coordinates. Recall that
the cylindrical radial coordinate rc is defined on the x0y0
plane perpendicular to the lens plane as shown in Fig. 1. We
choose an exponential decay in the radial direction and we
will make two different choices for the behavior of the
electron density in the z0 direction. Thus we will consider
an electron density of the form,

neðrc; z0Þ ¼ n0e−rc=rpfðz0Þ; ð45Þ

with rp a free parameter. This kind of models, more
realistic than those spherically symmetric [see Eq. (35)]
have also been considered in the past, obtaining several
estimates for the average electron density n0 and the
characteristic radius rp from the study of the ion distribu-
tion in the H II regions for various galaxies. In [60] values
of n0 ¼ 500 cm−3 and rp ¼ 8 kpc were obtained for the
galaxy NGC 1232, while in [49] values for n0 were
estimated in the range of ≈½30 − 260� cm−3, based on

the study of more than 600 galaxies from the KMOS and
SAMI surveys.
In this case the electron column density reads,

Neðθ;φÞ ¼
Z

Dls

−Dl

neðrc; z0Þdx0

¼ n0fðz0Þ
Z

Dls

−Dl

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02þðDlθ cosφÞ2

p
rp dx0

¼ n0rpfðz0Þ
Z

Dls=rp

−Dl=rp

e
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2þðDl

rp
θ cosφÞ2

q
dx̃; ð46Þ

where x̃ ¼ x0=rp. As this integral cannot be performed
analytically we choose to approximate it by a exponential
function as follows:

Neðθ;φÞ ¼ n0rpfðz0ÞðAe−ðθj cosφj=Bθ0ÞCÞ; ð47Þ

where θ0 ¼ rp=Dl, and A, B, and C are dimensionless
parameters. As we have mentioned in the previous
subsection these parameters depend on the particular
choice of rp. Therefore the plasma potential for this profile
is given by

ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe

−ðθj cosφjBθ0
ÞCfðz0Þ; ð48Þ

where

ψ2
ω ¼ Dls

DsDl

2πc2

ω2ð1þ zlÞ2
Aren0rp: ð49Þ

Unlike of the case considered in the previous subsection,
the resulting plasma potential is not circularly symmetric.
Therefore, unlike the spherically symmetric model we
described above, in this case the plasma potential acts as
a perturbation in the lens equation. In such a way that the
solution of the zero-order lens equation θp given by
Eq. (16) will coincide with the radius of Einstein’s ring,
that is, θp ¼ θE. Therefore, we have the following expres-
sions for the unperturbed and perturbed potentials (con-
sidering again the SIE gravitational potential as a model of
the dark matter halo):

ψ totðθ⃗Þ ¼ ψgravðθ⃗Þ þ ψplasmaðθ⃗;ωÞ; ð50Þ

ψ0ðθ⃗Þ ¼ ψgravðθ⃗Þjη¼0 ¼ θEθ; ð51Þ

δψðθ⃗Þ ¼ ψ totðθ⃗Þ − ψ0ðθÞ
¼ θEθð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2ϕ

p
− 1Þ þ ψplasmaðθ⃗;ωÞ: ð52Þ

Finally, we will choose two different kinds of decay
along the z0-direction, for both positive and negative values
of this coordinate. First an exponential decay and then a
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Gaussian one. In both cases the idea is to simulate that the
electrons are mostly distributed along the x0y0 plane, that is,
the decay in the z direction must be faster than along the xy
plane. As we did in the previous case, in order to describe
the images in the lens plane, we will express the lens
potential in terms of the coordinates b ¼ Dlθ and φ fitted to
the plane of the lens.

1. Exponential decay in z0-direction

For this model, we consider the following fðzÞ function,

fðz0Þ ¼ e−jz0j=z0 ¼ e−θjsinφj=θz ; ð53Þ

where z0 is a parameter, θz ¼ z0=Dl, while the plasma
potential will be given by

ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe

−ðθj cosφjBθ0
ÞCe−

θjsinφj
θz : ð54Þ

Thus, the solution of the lens equation is given by the
following expression:

δθ� ¼ δβ10 cosφþ δβ20 sinφþ θEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2φ

p
− 1Þ

−
ψ2
ω

θp
e−χ

�
χ þ ðC − 1Þ

�
θp
Bθ0

�
C
jcosφjC

�
�

ffiffiffiffi
Δ

p
;

ð55Þ

where χ ¼ ð θp
Bθ0

ÞCjcosφjC þ θp
θz
jsinφj, and

Δ¼δβ2s−
�
δβ20cosφ−δβ10 sinφþ

ηθE sin2φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηcos2φ

p

þψ2
ω

θp
e−χ

�
C

�
θp
Bθ0

�
C
jcosφjC tanφ−θp

θz
jsinφjcotφ

��
2

:

ð56Þ

In this way we obtain an analytical solution to determine
the position of the images in the lens plane. Although in this
case an analytical study can also be carried out on the
images position for different locations of the source as we
did for the spherical model, the expressions that result from
such analysis do not provide as much clarity as in the
previous case and for this reason we decided directly face a
graphic analysis of the images. What we can say from the
analytical solution is that, unlike the spherically symmetric
case, the effect of the plasma in the images will occur not
only in the radial direction but also in its angular position,
since in this case the function Δ depends on the plasma
parameters.
In Fig. 4 we consider as an example a circular source

with radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE,
δβ20 ¼ 0.0, and parameters n0 ¼ 10 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec
(green line). The fitting parameters are given by
A ¼ 2.00004� 0.00002, B ¼ 1.16� 0.01, C ¼ 1.719�
0.006. In blue lines we see the solution of the lens equation
for the case of pure gravity while in red we plot the
perturbative solution with plasma and compare it with the
numerical integration of the lens equation (gray line) in
order to corroborate the accuracy of the perturbative
approach.

FIG. 4. SIE model for a plasma disk with exponential decay in the z direction with parameters n0 ¼ 10 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec (green line) for a circular source with radius δβs ¼ 0.06θE centered at
δβ10 ¼ 0.08θE, δβ20 ¼ 0.0.
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In this case we plot the images for three different
observation frequencies, from left to right; 350 Mhz,
170 Mhz, and 80 Mhz. For the higher frequency that we
are considering the plasma effect is hardly distinguishable
from the pure gravity case which is the expected behavior.
For a frequency lower than 170Mhz, we see that the images
that are further away from the horizontal axis, which
coincides with the z ¼ 0 axis in the lens plane, tend to
get closer to the center of the lens, a change is also seen in
the angular position of the images with respect to the case
of pure gravity. On the other hand, we see that the images
close to the horizontal axis, which in turn coincides with the
plasma disk, tend to separate, forming for low frequencies
four images instead of the two that appeared in the gravity
pure case. This is because of due to the divergent property
of the plasma lensing, some rays of light deviate above and
others below the horizontal axis. These facts are evidenced
in the last plot for a frequency of 80 Mhz, showing in this
case that plasma can not only interfere with the morphology
of the images but also with their multiplicity.
Finally, we point out that these plots were obtained with

a single iteration of our method and in comparison with the
numerical solution we see that the method is quite accurate
at least for this studied configuration, although as it can be
seen, it is less accurate for lower and lower frequencies.

2. Gaussian-like decay in z0-direction

Let us consider the following fðz0Þ function,

fðz0Þ ¼ e−ðz0=z0Þ2 ¼ e−ðθ sinφ=θzÞ2 ; ð57Þ

where as before, θz ¼ z0=Dl, while the plasma potential
will be given by

ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe

−ðθj cosφjBθ0
ÞCe−ð

θ sinφ
θz

Þ2 : ð58Þ

Thus, the solution of the lens equation is given by the
following expression:

δθ� ¼ δβ10 cosφþ δβ20 sinφþ θEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2φ

p
− 1Þ

−
ψ2
ω

θp
e−ξ

�
ξþ ðC − 1Þ

�
θp
Bθ0

�
C
jcosφjC

þ θ2p
θ2z

sin2φ

�
�

ffiffiffiffi
Δ

p
; ð59Þ

where ξ ¼ ð θp
Bθ0

ÞCjcosφjC þ θ2p
θ2z
sin2φ, and

Δ ¼ δβ2s −
�
δβ20 cosφ − δβ10 sinφþ ηθE sin 2φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − η cos 2φ
p

þ ψ2
ω

θp
e−ξ

�
C

�
θp
Bθ0

�
C
j cosφjC tanφ

− 2
θ2p
θ2z

cosφ sinφ

��
2

: ð60Þ

We see again that the plasma will have effects on both the
radial and angular position of the images in the lens plane
since Δ also depends on the parameters of the plasma.
In Fig. 5 we consider as an example a circular source

with radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE,
δβ20 ¼ 0.0, and parameters n0 ¼ 40 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.730 arcsec
(green line). The fitting parameters in this case are A ¼
2.008� 0.002, B ¼ 1.590� 0.005, C ¼ 1.430� 0.008. In
the blue lines we see the solution of the lens equation for
pure gravity case while in red we plot the perturbative
solution with plasma and compare it with the numerical
integration of the lens equation (gray line) in order to
corroborate the accuracy of the method.

FIG. 5. SIE model for a plasma disk with Gaussian decay in the z direction with parameters n0 ¼ 40 cm−3, rp ¼ 10 kpc, z0 ¼ 1 kpc,
σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.730 arcsec (green line) for a circular source with radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE,
δβ20 ¼ 0.0.
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In this case we plot the images for four different
observation frequencies, from left to right: 320 Mhz,
170 Mhz, 140 Mhz, and 130 Mhz. Again, for high
frequencies the effect of the plasma is quite weak.
Although as we go to lower and lower observation
frequencies we see a similar situation with the previous
model. The images that are close to the horizontal axis
z0 ¼ 0 begin to separate but this time in three images each
of them, while the two images that are further from the
axis z0 ¼ 0 remain practically unchanged with respect to
the pure gravity case because, for this particular model, the
decay along the z0 direction is much faster than in the
previous model and therefore the influence of the plasma in
these images is very slight. It is also for this reason that the
perturbative solution resolves these images quite well and
not so well those close to the z0 ¼ 0 axis. In particular, we
see that for the observation frequency of 130 Mhz, the
perturbative solution would need at least another iteration
to be able to reproduce the images properly.
The effect produced by the plasma in the multiplicity of

images is closely related to the effect produced by the
plasma on the structure of caustic curves, and therefore also
on the structure of critical curves. In Sec. V we will study
the effect of plasma on these kinds of curves, thus showing
what causes this doubling in the images produced by
plasma.

C. Gaussian model: Front view

Let us now consider a plasma disk seen head-on with
Gaussian decay both along and across in the plane
perpendicular to the line of sight. In this case the electron
density will be given as follows:

neðx0; y0; z0Þ ¼ n0e
−y02þz02

r2p e
−x02

z2
0 : ð61Þ

Then, the projected electron density along the line of sight
reads,

Neðy0; z0Þ ¼
Z

Dls

−Dl

neðx0; y0; z0Þdx0

¼ n0e
−y02þz02

r2p

Z
Dls

−Dl

e
−x02

z2
0 dx0

¼ n0z0e
−y02þz2

r2p

Z
Dls=z0

−Dl=z0

e−x̃
2

dx̃; ð62Þ

where x̃ ¼ x=z0. In general, for the situations that we will
be considering, the distances Dl and Dls are of the order of
Mpc (megaparsec) while z0, the characteristic scale of the
plasma disk, is of the order of kpc (kiloparsec). Added to
the fact that the integrand e−x̃

2

decays fast enough, we can
replace the limits of integration Dl=z0 and −Dls=z0 in the
above integral by the asymptotic values ∞ and −∞,
respectively; and thus obtain a good approximation of it.

In addition, this will allow us to solve the integral
analytically. Therefore,

Neðy0; z0Þ ≈ n0z0e
−y02þz02

r2p

Z
∞

−∞
e−x̃

2

dx̃

¼ n0z0e
−y02þz02

r2p
ffiffiffi
π

p
: ð63Þ

Rewriting Ne in terms of the angular coordinate θ using the
relations (31) and (32) we obtain,

NeðθÞ ¼ n0z0e−θ=θ0
ffiffiffi
π

p
; ð64Þ

where θ0 ¼ rp=Dl. Finally the plasma potential will be
given as follows:

ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe−θ=θ0 ; ð65Þ

where

ψ2
ω ¼ Dls

DsDl

2πc2

ω2ð1þ zlÞ2
ren0z0

ffiffiffi
π

p
: ð66Þ

Note that this plasma profile will have a similar effect to the
spherically symmetric plasma profile we consider in (35)
because in both cases the projected electron density Ne is
axially symmetric with respect to the line of sight. Indeed,
we can see the similarity of the plasma potentials if we
compare the Eqs. (65) and (66) with the Eqs. (38) and (39).
For this reason, in the remainder of the article we will not
mention this profile because any analysis that we could
carry out is somehow contained in the analysis carried
out for the spherically symmetric density profile given
by Eq. (35).
Lastly, the effect that a plasma disk (like the one we

are considering) for an arbitrary orientation with respect to
the line of sight, has on image formation was recently
discussed and can be reviewed in [61,62].

IV. COMPARISON FOR SEVERAL ITERATIONS

Because this is a perturbative method, it is expected that
for some situations the solutions obtained through it are too
far from the exact solutions. In this section we will call
exact solutions to those obtained numerically since we can
obtain them with a high degree of precision, even though
they are not strictly so. This situation where the perturbative
method is not precise enough can be reached in various
circumstances, either because the ellipticity of the lens is
very high or because the source is centered too far from the
line of sight or its radius is too large. Or a combination of
them. These situations have been studied both in Alard’s
original work and in subsequent works [39,47,63].
On the other hand, the plasma will also influence the

accuracy of the perturbative method, since for plasma
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potentials without spherical symmetry it will intervene as a
perturbation of the lens potential in pure gravity, such is the
case, for example, of the plasma disk seen from side that we
analyzed in the previous section. But also the spherically
symmetric plasma potentials will have an effect on the
accuracy of the method since, as we can see, the first-order
solution given by (24) must be evaluated in θp which
corresponds with the zero-order solution of the lens
equation that is affected by the plasma. Obviously, the
influence of the plasma on the accuracy of the perturbative
method will be greater as the electron density increases as
well as for lower and lower observation frequencies.
As we have seen, in Sec. II B we introduced an iterative

correction of the perturbative method in order to address
those situations where the perturbative method (with a
single iteration) is not accurate enough to reproduce the
exact solutions.
In Fig. 6 we return to the spherical plasma model for

the following configuration: ν ¼ 80 Mhz, n0 ¼ 300 cm−3,
rp ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec
(green line), θpE ¼ 0.381 arcsec (black line). Source param-
eters (radius and position where it is centered): δβs ¼
0.06θE, δβ10 ¼ 0.5θE, δβ20 ¼ 0.0. The fitting parameters
are:A¼ 2.003�0.002,B ¼ 1.55� 0.01,C ¼ 1.47� 0.01.
In this figure we see the images formation for the first three
iterations of the perturbative method. In gray is the exact
solution (or numerical solution itself). Both for the case
of pure gravity (blue lines) and for the case with plasma
(red lines) we see that two images are formed: on the right
a gravitational arc that is a tangential deformation of the
solution to order zero, and on the left side a radially
deformed image, which we enlarged for better visualization.
The corrections introduced by the second and third iterations
are clearly evident in the enlarged region where we see how
the accuracy of the perturbative method improves substan-
tially, while the correction in the gravitational arc does not
seem to changemuch to the naked eye. In this case the effect

of the plasma is relevant in the accuracy of the method both
because we are working with a relatively low observation
frequency of 80 Mhz and also because we are considering a
relatively high-electron density of 300 cm−1 in comparison
with the cases that we have been analyzing up to now.
On the other hand, we also analyze the iterative correc-

tions of the perturbative method for the plasma disk seen
from the side with Gaussian decay in the z direction. In this
case we repeat the same configuration of parameters that

FIG. 6. SIE model with spherical plasma and exponential decay with pameters ν ¼ 80 Mhz, n0 ¼ 300 cm−3, rp ¼ 1 kpc,
σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec (green line), θpE ¼ 0.381 arcsec (black line) for a circular source with radius δβs ¼
0.06θE centered at δβ10 ¼ 0.5θE, δβ20 ¼ 0.0. Comparison for the first three iterations.

FIG. 7. SIE model for a plasma disk with Gaussian decay in z
direction, repeating the configuration of Fig. 5 with observation
frequency ν ¼ 140 Mhz. Third iteration.
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we used in Fig. 5 and in particular we are going to
concentrate on the last two subfigures on the right that
correspond to observation frequencies of 140 Mhz and
130Mhz, respectively. In both cases we will see how a third
iteration of the perturbative method produces significant
corrections of the perturbative method. These corrections
can be seen in Fig. 7 for the 140 Mhz frequency, and Fig. 8
for the 130 Mhz frequency. Higher-order iterations do not
show significant corrections.
In this way we graphically show for some particular

examples how the iterative corrections of the perturbative
method are useful to reproduce the position of the images
more faithfully. We highlight that in all cases corrections of
order four or higher were not necessary. On the other hand,
although it is possible to show how the analytical solutions
are for the different iterations, these expressions are quite
cumbersome and lack any illustrative character, and for this
reason we decided to carry out only a graphical analysis
of them.

V. CRITICAL AND CAUSTIC CURVES

As we saw in Sec. III, for certain plasma profiles, in
particular for a plasma disk seen from the side with both
exponential and Gaussian decay in perpendicular direction
to the disk, the plasma has a clear effect on the multiplicity
of images (see Figs. 4 and 5). Far from being the goal of
this section to establish a general criterion or necessary

conditions that allow us to predict the number of images
given a certain plasma profile, we are going to analyze the
effect of plasma on the critical and caustic curves associated
with Fig. 5, which corresponds to the model with Gaussian
decay in the z direction. The plasma will have a similar
effect on the critical and caustic curves associated with
Fig. 4 although in this case, since the lens potential is not
differentiable at z ¼ 0, they must be carefully calculated
near this area.
The critical curves, which are those curves defined from

the condition J ¼ 0 in the lens plane, where J ¼ det ∂β⃗
∂θ⃗

is

the determinant of the Jacobian matrix, are of significant
importance because they are related to some of the most
notorious effects of gravitational lensing theory; image
magnification and multiplicity of them (the latter, charac-
teristic of strong gravitational lenses). Due to the magni-
fication effect, the image of an infinitesimally small source
located at position θ⃗ will magnify by a factor jμðθ⃗Þjwhere μ
is known as magnification (or point magnification to be
precise) and is defined by μ ¼ 1

J. In this way, we see that the
critical curves are those regions in the lens plane where the
magnification of the images is infinite. This divergence
indicates that the geometric optics approach fails in this
region. However, when dealing in practice with extended
sources, the magnification is calculated by averaging the
point magnification on the source and, in turn, weighing it
and normalizing it by its surface brightness. For a detailed
discussion of this topic we refer to [2].
Let us assume, for example, that we have a spherical

gravitational potential ψ0 and a small perturbation δψ
associated with the plasma medium. In this situation, in
the perturbative approach, using (17) we have

J¼1

θ

��
1−

∂
2ðψ0þδψÞ

∂θ2

��
θ−

∂ðψ0þδψÞ
∂θ

−
1

θ

∂
2ðψ0þδψÞ

∂ϕ2

�

−
1

θ

�
1

θ

∂ðψ0þδψÞ
∂ϕ

−
∂
2ðψ0þδψÞ
∂θ∂ϕ

�
2
�����

θ¼θEþδθ

: ð67Þ

By doing a linear approximation in δθ and δψ and using

∂ψ0

∂θ

����
θ¼θE

¼ θE; ð68Þ

∂ψ0

∂ϕ
¼ 0; ð69Þ

1

θ þ δθ
¼ 1

θ
−
δθ

θ2
þOðδθ2Þ; ð70Þ

we finally obtain

FIG. 8. SIE model for a plasma disk with Gaussian decay in z
direction, repeating the configuration of Fig. 5 with observation
frequency ν ¼ 130 Mhz. Third iteration.
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J ¼ 1

θ

�
1 −

∂
2ψ0

∂θ2

��
δθ

�
1 −

∂
2ψ0

∂θ2

�
−
∂δψ

∂θ
−
1

θ

∂
2δψ

∂ϕ2

�����
θ¼θE

:

ð71Þ

From this relation it follows that if we consider that the
plasma effect introduced in δψ has circular symmetry, the
images can be demagnified with respect to the gravitational
magnification for overdense plasma regions (where
∂δψ
∂θ < 0). This case was analyzed in [36], finding that the
ratio between the magnifications of different images does
not change too much with respect to the case of considering
only gravity, concluding therefore that the existence of
plasma cannot account for the flux ratio anomaly. The
opposite effect is produced in under density regions. We
refer to [24,38,64,65] for different situations that can be
presented (see also [61] for a numerical study of the relative
magnification between the different images). However, for
noncircular perturbative potentials, the effect of the plasma
medium on the magnification of images could have a
completely different behavior, depending strongly on the
angular dependence in both θ and ϕ of the projected
potential δψ . Note also that from the expression for the
jacobian J, one infers that generically the totalmagnification
is nonlinear. Therefore, in those cases, we cannot assign
plasma and gravitational magnification values to each of the
individual images.
In the following, instead of calculating the critical curves

through the approximate formula Eq. (71) of J, we will
show the graphs through numerical calculations without
extra approximations.
In Fig. 9 we see the critical curves associated with

Fig. 5 for various observation frequencies. In green we
plot the Einstein ring while in blue and red the critical
curves for the pure gravity case and for the case with
plasma, respectively. We can see that even for frequencies
of 320 MHz, the influence of the plasma is notorious and
that its main influence, at least in this profile that we are
considering, occurs along the horizontal axis defined by
z ¼ 0 in the lens plane, because it coincides with the
plasma disk seen from the side. Although such curves
could also be obtained from a perturbative approach, we
decided to numerically study both the critical and caustic
curves in order to avoid any bias that a perturbative
solution might introduce.
On the other hand, as we previously mentioned, the

critical curves are also related to the multiplicity of images,
although in an indirect way since the evaluation of the lens
equation along these curves gives us what is known as
caustic curves, and the relative position of the source with
respect to these new curves is what will give us information
about the multiplicity of the images. In other words, those
sources that generate images located along critical curves in
the lens plane are located along caustic curves in the source
plane. A simple example of this is given in the case of an
spherically symmetric lens and a point source, the latter

aligned with the line of sight. The image produced in this
case is an Einstein ring which in turn coincides with a
critical curve, and therefore the caustic curve will be in this
case the point where the source is located.

FIG. 9. Critical curves associated to the SIEmodel of Fig. 5, for a
plasma diskwithGaussian decay in the z directionwith parameters
n0 ¼ 40 cm−3, rp ¼ 10 kpc, z0 ¼ 1 kpc, σc ¼ 180 km=s,
η ¼ 0.3, θE ¼ 0.730 arcsec (green line) for a circular source with
radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE, δβ20 ¼ 0.0. Blue
and red lines correspond to critical curves in the pure gravity case
and in the plasma case, respectively.
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In Fig. 10 we can see the caustic curves associated with
Fig. 5. In blue we see the caustic curves for the pure gravity
case in the form of an astroid while in red the caustic curves
for the case with plasma are shown for different observation
frequencies. In black we can see the relative position of the

source with respect to these curves. The effect that the
plasma has for lower frequencies is notable, which is
correlated with the images that are formed in the lens
plane. For an observation frequency of 320Mhz we see that
although the effect of the plasma on the caustic curves is
appreciable, the images change very little because the
source is relatively far from them. However, for lower
and lower frequencies we see substantial effects in the
images formed along the axis z ¼ 0 in the lens plane, a
situation that is consistent with an increasing approxima-
tion between the source and the caustic curves. For an
observation frequency of 130 Mhz we can even see that the
plasma produces a change in the multiplicity of the images
that is perfectly distinguishable, coinciding with an overlap
between the source and the caustic curves in multiple
places. In particular, at a frequency of 130 MHz, the source
is located within the left-hand cusp, which appears near the
center, without having fully entered the interior of the right-
hand cusp nearby. This explains why the image inside the
Einstein ring is split into three images on the positive
abscissa axis in the rightmost figure of Fig. 5, in accordance
with the general theory of image formation near caustic

FIG. 10. Caustic curves associated to the SIE model
of Fig. 5, for a plasma disk with Gaussian decay in the z
direction with parameters n0 ¼ 40 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3 for a circular source with
radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE, δβ20 ¼ 0.0. Blue
and red lines correspond to caustic curves in the pure gravity case
and in the plasma case, respectively. In addition the position of
the source is shown in black line.

FIG. 11. Images for different positions of the source with
respect to the caustic curves for the same configuration of 5 with
observation frequency ν ¼ 130 Mhz.
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curves (see [66] and references therein). However, the same
is not observed in the image on the left, which still retains
the shape of an elongated arc (also in agreement with the
general theory). It should be noted that, since we are
dealing with singular gravitational potentials, the odd
number images theorem does not apply to the situations
studied here.
Finally, in Fig. 11 we see simultaneously the images that

are formed (subfigure below) for different relative positions
of the source with respect to the caustic curves (subfigure
above). In this way, it is possible to better appreciate the
importance of caustic curves in the morphology and
multiplicity of images in the lens plane.

VI. A 3D SPHEROIDAL MODEL

A. The model

It is our main interest in this section to put in perspective
the two-dimensional simple lens models discussed previ-
ously by comparing them with enhanced models coming
from a volumetric distributions. There are a couple reasons
that motivate this further analysis, let us mention for
example that even though these 2D models are useful
for fitting and quantifying many astrophysical systems it is
often the case that spheroidal symmetric distributions
do not project to surface mass densities with ellipsoidal
symmetry as in the case of SIEs. Another usual feature of
elliptical models is that they are based on two-dimensional
isodensity or equipotential curves with ellipses having the
same eccentricity, instead in some case it could be desirable
to have at hand models that tends to be spherically
symmetric in the limit or large distance from the center
of the distribution; this is not the case for the models
previously studied. For instance, the spheroidal symmetries
appear naturally when one considers generalized mass
distribution in Newtonian gravity which leads for example
to the so-called third Newton theorem [67].
Below we present the description of static and spheroidal

lenses with an approach that has some differences with
respect to the usual treatments. Here, we will prefer to deal
with a geometrical model describing the spacetime asso-
ciated to the lens and built an spheroidal symmetric model
based on the standard oblate spheroidal coordinates [68],
where the spheroids of symmetry are confocal; this means
that when the radial coordinate associated to spheroids
growth its eccentricity ϵ decreases. So, below we present a
geometry that has oblate symmetry and becomes a direct
generalization of the well-known singular isothermal pro-
file in spherical symmetry to the spheroidal case. The
model is determined by the metric

ds2 ¼
�
r
r0

�
4σ2

dt2 −
�

Σ
r2 þ r2μ

þ 2MðrÞ
r

�
dr2

− Σdθ2 − ðr2 þ r2μÞsin2ðθÞdϕ2; ð72Þ

where

MðrÞ ¼ 2σ2r; ð73Þ

and r0 and rμ are fixed parameters. Note that σ here does
not have any unit (σ ≡ σc=c). If rμ ¼ 0 the spacetime
becomes spherically symmetric and would have a mass-
energy density of isothermal form given by

ρspheðrÞ ¼
1

2πr2
σ2

1þ 4σ2
≃

σ2

2πr2
; ð74Þ

while its spacelike matter components would be PrðrÞ ¼ 0

and PθðrÞ ¼ σ2ρspheðrÞ (and so PθðrÞ ≪ ρspheðrÞ since
typically σ2 ≪ 1). That is, when rμ ¼ 0 the above metric
is a peculiar singular isothermal profile; its mass-energy
density is only determined by the mass functionMðrÞwhile
the timelike component of the metric ensures a model with
negligible pressures and vanishing stresses. The behavior
of the solution in the limit rμ ¼ 0 was in fact one of the
criteria adopted to find the line element (72) since in this
case, this lens will display similar phenomenology than
the spherical analogs of the SIE model of the previous
sections. Instead, if σ ¼ 0 one obtains the flat line element
in the standard oblate-spheroidal coordinates. The eccen-
tricity of the oblate spheroids of r ¼ constant is given by

ϵ2 ¼ r2μ
r2þr2μ

. As we previously mentioned, this becomes a

subtle difference with respect to the SIE model where
the ellipses of symmetry have a constant eccentricity,
namely ϵ2SIE ¼ 2η

1þη ¼ constant.
Then, in order to compare both models a suitable choice

of the parameter rμ has to be made to fit a SIE characterized
by η ¼ constant.
For rμ ≠ 0, the model presented in this section is a kind

of natural generalization to oblate spheroidal symmetry of
the singular isothermal profile, in particular it is interesting
to note that even the stresses given by the component Trθ of
the energy momentum tensor are present, they become
negligible.
The following sections show the behavior of this lensing

in both weak and strong regimes when a plasma is present
or absent.

B. Weak-lensing optical scalars

1. Achromatic lensing

In this subsection we will present the calculation of the
optical scalars associated to the model of the previous
section. The methods used in this section differ from those
introduced in Sec. II; to properly account the full geometry
of the lens we will base our computation on the framework
presented in references [11,69,70]. This framework allows
to deal with the full contributions coming from the
curvature of the lens, in particular it takes into account
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for the possible spacelike contributions of the energy
momentum tensor which are usually neglected in most
methods based on linearized gravity [2]. We will use the
following expression valid when the cosmological back-
ground is explicitly taken into account [70]:

κ ¼ ð1 − κcÞκL þ κc; ð75Þ

γ ¼ ð1 − κcÞγL; ð76Þ

where now the cosmological contribution κc to the expan-
sion is given by

κc ¼ 1 −
DAðλÞ

λ
; ð77Þ

and where the lens intrinsic contribution to the expansion
and the shear are given by

κL ¼ DAl
DAls

DAs

Z
λs

λo

Φ00dλ; ð78Þ

γL ¼ DAl
DAls

DAs

Z
λs

λo

Ψ0dλ; ð79Þ

where λ andDA denotes the geometric affine distances and
angular diameter distances respectively, and subindices o
and s refers to values at the observer and the source
respectively. The quantities Φ00 ¼ − 1

2
Rablalb and Ψ0 ¼

Cabcdlamblcmd are the Ricci curvature scalar and
Weyl curvature scalars of the GHP formalism [71] with
respect to a null tetrad ðla; ma; m̄a; naÞ adapted to the
path of the photon under consideration. In the weak-
lensing regime only first order effects on the curvature are
relevant and so in this case the null geodesic and the
null tetrad are taken to be those corresponding to unper-
turbed null geodesic of the background (as described for
example in [69]). Under such approximation, the limits
of the integral range from λo to λs which are the values of
the affine parameters at the observer and at the source
respectively.
For first order effects on the curvature as those present in

the weak-lensing regime, In particular, for first-order effects
on the curvature, the null geodesic as well as the null tetrad
are taken to be those corresponding to unperturbed null
geodesic of the background (as described for example in
[69]) and the limits of the integral range from λo to λs which
are the values of the affine parameters at the observer and at
the source respectively.

2. Chromatic lensing

When a static plasma is present on the static geometric
lens, similar expressions to the previous subsubsection
hold; in such case, the curvature scalars are those
associated to the Gordon-like optical metric introduced

in [11]. That metric has the property that the projected
spacelike orbits of massless particles on the surfaces t ¼
constant coincides with those of the spacetime metric;
and, since deflection angles are essentially deduced from
the spacelike orbits, the expressions for the bending angle
and optical scalar in a medium filled with a plasma are
identical to those of the spacetime metric. Then, one can
show that similar expressions to those of Eqs. (75), (76),
(78), and (79) remains valid if one replace the curvature
scalar Φ00 and Ψ0 of the spacetime metric by its analogs
computed in the Gordon-like optical metric; this is
Φ00 → Φ00G

and Ψ0 → Ψ0G
, where the subindex G stems

for Gordon-like line element. The associated Gordon-like
optical metric to Eq. (72) for a static plasma with
spheroidal symmetry is

ds2G ¼ 1

nðrÞ2
�
r
r0

�
4σ2

dt2 −
�

Σ
r2 þ r2μ

þ 2MðrÞ
r

�
dr2

− Σdθ2 − ðr2 þ r2μÞsin2ðθÞdϕ2; ð80Þ

where nðrÞ denotes the refractive index of the ionized
medium.

3. Including a plasma model: The refractive index

For our spheroidal symmetric lenses we will use a
plasma distribution that is consistent with that symmetry,
for this purpose we will consider a plasma density of the
form

neðrÞ ¼ npe
− r
rp ; ð81Þ

with rp and np both constants. Here it is important to recall
that ω is the angular frequency that one would measure at
the location of the plasma, so that if we consider an
observing frequency ν then we will have

ω ¼ 2πνð1þ zlÞffiffiffiffiffi
gtt

p ; ð82Þ

with gtt the timelike component of the line element (72).

4. Numerical results

With the aim to illustrate the typical behavior of the
oblate spheroidal geometry we show below the result
of a numerical computation of the optical scalar in
Figs. 12 and 13, and the magnification of a lens with such
geometry in Fig. 14. Left panels of these figures correspond
to pure gravity while right panels to the spheroidal
geometry with a plasma. The parameter of the geometry
in this example are rμ ¼ 0.7rE, σc ¼ 180 km s−1; where
the radial scale rE corresponds to the Einstein’s radius of a
spherically symmetric singular isothermal profile, this is
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rE ¼ 4πσ2c
DlDls
Ds

. For the plasma we choose np ¼ 60 cm−3

and rp ¼ 10 kpc. We have used the affine distances
λl ¼ 169.55 Mpc and λs ¼ 395.164 Mpc; which, when
expressed as angular diameter distances are DAl

¼
169.528 Mpc and DAs

¼ 394.856 Mpc respectively on
the flat (k ¼ 0) Friedman-Robertson-Walker model that
we have chosen (see introductory section).
The two figures, Figs. 12 and 13, show the projection of

κ, γ in the plane ðx; zÞ of the lens together with their level
sets. They exhibit a nontrivial structure near of the foci of
the spheroids associated with the geometry and only far

from the foci the level set resemble at some extent to
elliptical shapes. Figure 14 show the position of the critical
curves (sharp-yellow contour) that would correspond to
deformations of the Einstein ring of the case rμ ¼ 0.
The examples correspond to the simplest observational

setting were a distant observer is located at θ ¼ π
2
and where

the spheroidal geometry appear to her/him not tilted. The
case of general orientations can be handled by and
appropriated rotation of the spheroids local frame.
The numerical integration of Eqs. (75) and (76) in all the

situation was accomplished by the use of a Gauss-Legendre

FIG. 12. Convergence for a geometry with rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. The plasma model is show next to the
pure gravity case and has been chosen such that: νo ¼ 180 MHz, np ¼ 60 cm−3, rp ¼ 10 kpc. Red dots in the figures indicates the
position of the foci that corresponds to the ellipse generating the oblate ellipsoid.

FIG. 13. Shear for a geometry with rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc plus a plasma model with the following
parameters: νo ¼ 180 MHz, np ¼ 60 cm−3, rp ¼ 10 kpc. Red dots in the figures indicates the position of the foci that corresponds to
the ellipse generating the oblate ellipsoid.
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quadrature of order seven while the computation of the
curvature scalar was done with the use of xAct suite [72].

C. Relation with elliptical models

In order to attempt a comparison between the geometric
model and the SIE model, an appropriated choice of
parameters has to be made. For example, one could try
to fit critical curves of one model to the other or to associate
the elliptical shape of the SIE potential with an appropriated
projected ellipsoids among others possibilities. For this
study we combine this two criteria to fit similarities
between features of both models. We note first that the
equipotential curves of ψgrav ¼ k,

θk ¼
k

θE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cosð2ϕÞp ; ð83Þ

define ellipses with semimajor axis a along θ1 and semi-
minor axis b along θ2, in particular one has that

1 − η ¼ k2

θ2Ea
2
; ð84Þ

1þ η ¼ k2

θ2Eb
2
: ð85Þ

Dividing both expressions and rearranging terms to isolate
η one obtains

η ¼ a2 − b2

a2 þ b2
; ð86Þ

which gives a relation between the parameter η only
in terms of the principal axis of the ellipses. Let us
note that if one takes k ¼ χθ2E then θk0 ¼ χθE=

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
and θkπ=2 ¼ χθE=

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
. Similarly than before, one can see

that

η ¼
θ2k0 − θ2kπ=2
θ2k0 þ θ2kπ=2

: ð87Þ

On the other hand, in the spheroidal geometry one has
that a2 ¼ r2 þ r2μ and b2 ¼ r2, so that one has

r2μ ¼ a2 − b2 ¼ D2
l ðθ2k0 − θ2kπ=2Þ

¼ χ2D2
l θ

2
E

2η

1 − η2
≡ χ2r2E

2η

1 − η2
; ð88Þ

where we have defined

rE ≡DlθE ¼ 4π
σ2c
c2

DlDls

Ds
: ð89Þ

Preliminary comparison of the critical curves of both
models suggests to consider 1

χ ¼ 1.16. In terms of the
relation η ¼ ηðrμÞ one obtains for example ηð0.3rEÞ ¼
0.06033, ηð0.4rEÞ ¼ 0.10643, ηð0.5rEÞ ¼ 0.16369,
ηð0.6rEÞ ¼ 0.22945, ηð0.7rEÞ ¼ 0.30000.

FIG. 14. Magnification factor for a geometry with rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. The plasma model is show next
to the pure gravity case and has been chosen such that: νo ¼ 180 MHz, np ¼ 60 cm−3, rp ¼ 10 kpc. Red dots in the figures indicates
the position of the foci that corresponds to the ellipse generating the oblate ellipsoid. For reference with the spherically symmetric case
(rμ ¼ 0) we have also included in the form of a white ring the Einstein ring for the case of pure gravity.
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D. Strong lensing of a disklike oblate
spheroidal geometry

Let us consider now large distortions of background
sources due to our geometric model; such a strong-lensing
effect will be associated to sources near to caustic points. It
is then necessary to determine the region of caustics for the
model and afterwards to look at the arcs produced by a
small circular source near to the caustic. We realize that in
the full geometric treatment we do not have, in general, an
explicit lens equation in terms of bending angles, so that the
image generation as well as the location of caustics have to
be performed by means of the ray tracing of the null
geodesics of the geometry (72) in the case of pure gravity,
or null geodesics of Eq. (80) if we take into account the
chromatic effect of a static plasma. The numerical solution
requires the integration of the exact null deviation geodesic
equations and null geodesic equations in order to determine
the caustics and images that we present below.

1. Numerical implementation

Our ray-tracing code uses a classical Runge-Kutta
integrator pair of order 7–8 from the suite RKSuite [73]
with high accuracy to find the solution to the path of the
photons from the observer position. The code additionally
computes the solution of the geodesic deviation equation
and therefore allows us to compute the optical scalars along
the central null geodesics of a thin bundle. In particular, in
order to asses the position of caustics and critical curves
we integrate the equations to find those points where the
magnification factor becomes divergent. The search of the
angular directions that corresponds to points comprising
caustic curves or the points corresponding to the source is
implemented through iterative approximations. In the sky
of the observer one starts with two initial guesses taken
along a radial direction in the plane perpendicular to the
line of sight and in a next step we run the midpoint
algorithm to correct the initial geodesics to the closer ones
to the specified target, the position of the source or the
criteria that the geodesic reach a divergence beyond certain
threshold. For instance, in our examples below, the typical
size of the images have angular size of order 0.1–1 arcsec;
for them we have taken a error tolerance in the determi-
nation smaller than 10−4 arcsec. In the case of caustic, we
have required that geodesics having magnifications factor
greater than 106 should be considered as effectively passing
through a caustic point.

2. Results

We present below the results of calculations in two
different cases: the first one corresponds to a model with
less separation between foci than the previous one dis-
cussed in the weak-lensing analysis (Sec. VI B 4); we have
taken rμ ¼ 0.3rE in this case while keeping the other lens
parameters and distances unchanged. In order to visualize

large distortions like arcs we also placed a circular source at
ðβx; βzÞ ¼ ð0.2θE; 0Þ arcsec, with radius rsource of size
rsource ¼ 0.1 arcsec. The results in are shown in Figs. 15
and 16 for the case of pure gravity. It is observed in the
former one, the formation of large arcs at both side of the
source; one of them lies outside of the region delimited by
the critical curve while the other is inside. The presence of
two arcs is associated with the fact that the source intersect
the caustic; this can be appreciated in Fig. 16 where it is

FIG. 15. Pure gravity: lensed and unlensed images of a circular
source intersecting the caustic region of the model characterized
by rμ ¼ 0.3rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. Blue marks
indicate those points of the source employed to build the images
of the arcs; in red the small crosses indicate the observed position
of those points in the source. The black points on the horizontal
axis indicates the angular position of the Einstein ring in the
spherical case.

FIG. 16. Pure gravity: critical and caustic curves for an oblate
spheroidal model with a small deviation from spherical sym-
metry. The geometry is characterized by rμ ¼ 0.3rE, σc ¼
180 km s−1 and r0 ¼ 0.32 Mpc. Blue marks shown on the caustic
are in correspondence with the red marks in the critical curve. The
black points on the horizontal axis indicates the angular position
of the Einstein ring in the spherical case.
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shown the appearance of the critical curve and the caustic
giving origin to it. It is worthwhile to mention that such
behavior is in full agreement with the expected images that
one would obtain with the well-known 2D models.
We also consider for completeness, the model of

Sec. VI B 4 having rμ ¼ 0.7rE. The images corresponding

to the circular source considered in this section are shown
in Fig. 18 and its position with respect to the caustic
(diamond shape) is shown in Fig. 17. In both figures we
have included the results when a plasma Sec. VI B 3 is also
present. In order to highlight the differences, in this case the
plasma frequency was taken to be ν ¼ 80 Mhz, while the
remaining parameters np and rp remaining unchanged.
Two notable changes are observed in this case with respect
to the previous one; the presence of four images with arc
shapes that appear closer to the center than those of the pure
gravity case, and the shrink of the critical curve. As clearly
noticed from Fig. 18, the cause explaining the number of
images should be ascribed to the position of the source in
the interior of the caustic region, in agreement with similar
results with 2D models. Finally, it is perhaps interesting to
note that the shape of the critical curve in the pure gravity
case fits the critical curve of Fig. 14 very well despite both
being computed with different methods.

VII. CONCLUSIONS

In the first part of this work, after a generalization of the
Alard perturbative approach to solve the lens equations and
making use of simple models for the ISM plasma around
galaxies, we have shown how to include its effects on the
photon propagation in the radio-frequency band to study
the formation of lensed images in the strong-lensing regime
in an analytical perturbative way. We have described the
position, shape and number of images for circular sources
which are lensed by galaxies in two simple orientations,
frontal and edge view. More general orientations are
discussed in [61,62]. For the particular cases of plasma
profiles that we have used, we have shown how the number
of images can increase as the observation frequency
approaches the characteristic frequency of the plasma,
resulting in the number of images being sensitive to the
plasma profile and to the position of the source in the region
of the caustic curve. Of course, in a real galaxy, the
electronic distribution of plasma in the interstellar medium
should be much more complex than in the models studied
here. More sophisticated models should include the plasma
concentration along arms in spiral galaxies, the bulk, disk,
and also the plasma environment around satellite galaxies,
etc. As previously discussed, these kind of models already
exist in the literature [48–54,74]. However, the simple
models studied here, allow us to give an idea of what kind
of situations one could find when analyzing lensed systems
in the low radio-frequency regime, such as those expected
to be observed in LOFARþ nenuFAR observatory
[74,75]. It is worth noting that subarcsecond-resolution
observations of bright radio sources, even at 30 MHz, have
recently become possible thanks to the LOFAR observatory
[76]. Additionaly, not only the position of the images will
be affected by the presence of the plasma, but also the time
delay between them, which in addition to the well-known
geometric and Shapiro effects will now also depend on the

FIG. 17. Critical and caustic curves for the oblate spheroidal
model with and without a plasma. The geometry is characterized
by rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. The plasma
has been chosen such that νo ¼ 80 MHz, np ¼ 60 cm−3,
rp ¼ 1 kpc. The central diamond shapes in cyan and red
correspond to the caustics for the cases of pure gravity and
plasma respectively. The correspondence between the points on
the caustic (blue marks) and the points on the critical curve (red
marks) is shown for the pure gravity case. Black dots in the αx
axis are placed as reference for the position of the Einstein angle
in the spherical case.

FIG. 18. Lensed and unlensed images of a circular source
inside of the caustic region shown in the previous figure, for
the model the geometric model rμ ¼ 0.7rE, σc ¼ 180 km s−1 and
r0 ¼ 0.32 Mpc. The images of the circular source (cyan) are
drawn in green for the pure gravity case. Red curves correspond
to images in the case of a plasma with νo ¼ 80 MHz,
np ¼ 60 cm−3, rp ¼ 1 kpc.

PERTURBATIVE AND NUMERICAL APPROACH TO PLASMA … PHYS. REV. D 107, 084041 (2023)

084041-21



plasma medium, which affects the group velocity of
propagation of electromagnetic waves [24,36,61,77].
These and other studies will be developed in future works.
An interesting question is how to reconstruct the

lensing properties from image observations when a
gravity þ plasma environment is taken into account. In
such situations, parameters associated with the plasma
potential model must be added to those associated with
the gravitational potential. In cases where gravitational
lensing can be observed in the optical regime (or where
plasma effects are negligible), the gravitational potential
can be separately reconstructed using conventional tech-
niques (see, for example, [78] and references therein).
However, if the source is variable, estimates of the
dispersion measurement and plasma potential can be
obtained by studying variations in the time delay between
different images, which is chromatically dependent on the
presence of plasma [79]. In cases where differences in
the arrival time of signals from the images cannot be
measured, the procedure becomes more complicated,
but it can still be performed if the lensed system can
be observed at three nearby frequencies. For more details
on this method, interested readers are referred to Wagner
and Er [79].
Additionally, with the intention to further study more

general models for the lens distribution, we have also
introduced a full geometrical model which is a natural
generalization of spherically symmetric lenses with a

singular isothermal profile. The metric proposed in this
case resemble a disklike oblate geometry that far from the
center approaches to a spherically symmetric one. Despite
the differences between this kind of models and those of
Sec. III that do not allow for a direct comparison, we have
shown that a reasonable fitting criteria can be attempted in
order to study some qualitative features appearing in both
lens models; such as the shape of critical curves and the
observed number of images that are obtained depending on
the position of source with respect to caustics. While two-
dimensional models are certainly useful for studying these
types of problems, it is important to note that our consid-
eration of the three-dimensional spheroidal model repre-
sents a significant step toward constructing more realistic
models. Furthermore, in Sec. VI B, we have taken into
account the influence of the cosmological framework on
these systems, further reinforcing the realism of our
models. A further analysis on the properties of these kind
of model will be presented elsewhere.
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