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ABSTRACT
The images of Sagittarius A* produced by the Event Horizon Telescope (ETH) Collab-
oration in 2022 present features that were associated with a emission ring consistent
with what is expected from an accretion disc surrounding the supermassive black hole
at the center of our Galaxy. We study different configurations of a simple accretion
disc model that became successful in reproducing the main features observed in M87*
together with a ray tracing-technique that accounts for magnification effects along
null geodesic bundles. In particular, we explore in detail the case of nearly edge-on
configurations which are a priori the most expected configurations for a relaxed disc.
Our results show that these scenarios remain viable when compared with images re-
constructed with data from April 6 and 7 of 2017.
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1 INTRODUCTION

The immediate surroundings of supermassive black holes
(SMBH) in scales of a few Schwarzschild radius were re-
solved for the first time in recent years Akiyama et al.
(2019a, 2022a). Utilizing the Very Long Baseline Interfer-
ometry (VLBI) facilities, comprised in the Event Horizon
Telescope (EHT), the first images corresponding to M87*
at the center of the nearby elliptical galaxy M87(Akiyama
et al. 2019b) and Sagittarius A*(Akiyama et al. 2022c), the
SMBH hosted in our Galaxy were obtained. These observa-
tions were carried in the millimiter radio wave band attain-
ing a resolution through the several campaigns of approxi-
mately ∼ 20µarcseconds. Most of the reconstructed images
using different methods often reveal a prominent ring-like
structure, which corresponds to the emission from hot gas
around the event horizon of the black holes. Comparison
with a bank template of GRMHD numerical simulations in-
dicates that indeed the geometry of the central object is
compatible with a Kerr black hole. However, due to the in-
trinsic limitations in the imaging process, the interpretation
of the diverse features of the images is not completely clear
due to the degeneracy in the models that could explain it.
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We have studied in the past the case of M87* Boero
& Moreschi (2021) assuming a simple scenario for the emis-
sion in terms a disc region having two temperatures as com-
monly observed in GRMHD simulations and we obtained
images with a new approach that combines the integration
of geodesics and geodesic deviation equation in an very ef-
ficient way Boero & Moreschi (2020). As a result we found
that our images could fit very well reported final images of
the EHT Collaboration.

In this article we focus on the most recent EHT pub-
lications on Sagittarius A*Akiyama et al. (2022a,b,c,d,e,f);
we carry a similar analysis to our previous work, motivated
by the good results we had obtained; and noting that both
SMBH have almost the same angular size.

Both systems are catalogued as low luminosity AGNs
(LLAGNs) and characterized by accretion rates satisfying
Ṁ � Ṁcrit with c2Ṁcrit = L̇Edd; The Eddington’s luminos-
ity limit LEdd becomes a useful parameter that determines
in most accretion model the characteristic of the disc and
its emission properties. For the case of M87* and Sgr A∗ the
discs is expected to present properties consistent with emis-
sion coming from an optically thin disc where very hot flows
are accreted mainly through advection processes (Shapiro
et al. 1976; Ichimaru 1977; Yuan & Narayan 2014). The ma-
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2 E.F.Boero and O.M.Moreschi

terial in the vicinity of the BH is an ionized plasma with
electrons and ions having different temperatures.

The EHT Collaboration has provided a physical sce-
nario for the geometry and the accretion flow orbiting Sgr
A∗ based on comparison of the data with several synthetic
images from diverse models. From their analysis they claim
that the orbiting plasma is most probably described by mag-
netically arrested disc (MAD) which tend to be strongly
magnetized.

As in their previous work on M87, the EHT team em-
phasizes that the images could be mainly understood in
terms of a ring structure; however we have also shown in our
article on the same system, that the images might as well be
understood in terms of the natural structure of a disk model.
What is somehow striking in the described construction pro-
cess used by EHT Coolaboration in the Sgr A∗(Akiyama
et al. 2022c) case is the fact, see for example their figures
7, 11 and 12, that the models involving rings, crescents,
disks and other general relativistic magnetohydrodynamic
(GRMHD) calculations, are almost face-on configurations.
Since as observers we are situated more or less in the equa-
torial plane of the galaxy, it would be natural to assume first
a ring or disk structure that it would be close to its plane
of symmetry, that is, one would expect to have an edge-on
view. We tackle this issue in this article.

As it was the case of the previous works of
EHT(Akiyama et al. 2019a), the spectral energy distribution
of such systems presents features that are thought to be asso-
ciated with emission from an optically thin and geometrically
thick accretion disk with an observed brightness tempera-
ture in radio wavelengths in the range of 109 − 1010K. The
expectation, as it was the case of M87, the emission collected
at sub-millimeter wavelength of (∼ 230GHz) is thought to
be weakly absorbed by the surrounding media, allowing to
detect the immediate vicinity of the event horizon of the
associated SMBH.

Whenever possible, for tensors and vectors objects, we
will employ standard abstract index notation with Latin let-
ters a, b, c, ... for tensor fields. Our choice of signature for the
spacetime metric gab is (+,−,−,−).

One of the main characteristics of the observation of
Sgr A∗ is its time variability. In turn, this complicates
considerably the reconstruction of an image from the ob-
served data. For this reason as mentioned in (Akiyama et al.
2022c,d) the EHT team must rely on different kind of mod-
els. In fact, their methodology for the construction of im-
ages is to use a variety of models for the matter distribution
around the supermassive black hole. Due to the unexpected
geometry suggested for the EHT image, here shown in Fig.
1, we study first a thin accretion disk whose plane is inclined
with respect of the plane of the galaxy, us suggested by the
EHT image. We have considered a big range for the pro-
jected angular momentum of the black hole with the line of
sight, and also a range of values for the possible total angular
momentum of the black hole. Since we were not convinced
with the results of this study, that we present below, we
have also considered the more natural assumption of an ac-
cretion disk and black hole angular momentum that have
small angles with respect to the plane of the galaxy and an-
gular momentum of the galaxy respectively. In our opinion,
this last model gives better results than the previous one.

The organization of the article is as follows. In the next

Figure 1. Image from the EHT Collaboration of Sagittarius A∗;
where they show an average of reconstructed images for April 7.

second section we review the basic equations that we use
in our construction. Since they were discussed at length in
our previous article (Boero & Moreschi 2021) we present
here a shorter summary of the basic dynamical equations
for the deviation vector and the optical scalars equations. In
section 3 we describe the geometry, the evolution equations,
the conserved quantities, the initial conditions and details of
the matter model. Our image constructions are presented in
section 4. We take the opportunity in this case to also present
the calculation of the expected silhouette of the black hole
for different configurations in section 5. We reserve the final
section 6 for some recapitulation and comments; where we
argue that our resulting image is very closely related to the
April 6 image coming from the their Themis pipeline.

2 EXACT GRAVITATIONAL LENS OPTICAL
SCALARS

2.1 The basic equations

Although we have discussed the notion of ‘exact gravita-
tional lens optical scalars’ in the past(Boero & Moreschi
2021), we here introduce an alternative for the initial con-
ditions, improve the notation and correct a typo of the last
version.

The general setting is to consider the null geodesics in
the past null cone of an observer moving with 4-velocity va.
The tangent vectors to the null geodesics are denoted by
`a, which are past directed; so that are normalized by the
condition:

`ava = −1, (1)

and since they are null geodesics, we also have

`a∇a`b = 0, (2)

where ∇a is the covariant derivative in terms of abstract
indices.

In order to calculate the optical scalars we need to intro-
duce the geodesic deviation vector ςa, in terms of a suitable
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null tetrad (`a,ma, m̄a, na) where ma and m̄a is a pair of
complex conjugated vectors and na an additional real null
vector. We choose the two complex vectors ma and m̄a to
be parallel propagated along the geodesic. Then, we express
the geodesic deviation vector as

ςa = ςm̄a + ς̄ma + η`a. (3)

Using that ςa must be Lie transported along the null
geodesics, one arrives at the geodesic deviation equations:

`a∇a
(
`b∇bςd

)
= R d

abc `
aςb`c; (4)

where R d
abc denotes the Riemann tensor. Then the task is

to solve the couple system of differential equations (2) and
(4).

2.2 Optical scalars

Let us define here explicitly the exact gravitational optical
scalars.

The situation we are considering is that of an observed
deviation δθi from a reference observed direction in the sky,
denoted by θ, corresponding to the direction of the null
geodesic described by `a. In the absence of gravitational ef-
fects one would detect the deviation δβi with respect to the
reference direction β. Then, the optical scalars κ, γ1, γ2 and
ω are defined through the linear relation between δθi and
δβi

δβi = Aij δθj , (5)

were the matrix Aij is given by

Aij =

(
1− κ− γ1 −γ2 − ω
−γ2 + ω 1− κ+ γ1

)
. (6)

Let us note that the component ς is complex, and that
their real and imaginary parts (ςR, ςI), can be used as com-
ponents in a real 2-dimensional plane; orthogonal to `a and
therefore they will be related to the angles δθi and δβi. We
will denote with υR and υI the derivatives of ςR and ςI re-
spectively, along the null geodesic `a. Then the initial con-
ditions for the couple differential equation, that is at the
observer position, are:

δθi ≡
(
υR
υI

)∣∣∣∣
λ=0

≡
(
` (ςR)
` (ςI)

)∣∣∣∣
λ=0

, (7)

and

ςi
∣∣∣
λ=0

=

(
ςR
ςI

)∣∣∣∣
λ=0

=

(
0
0

)
; (8)

where we are using λ to denote the affine parameter along
the null geodesic.

At the target point the affine parameter has the value
λs and then by definition one has

δβi ≡ 1

λs

(
ςR
ςI

) ∣∣∣∣
λ=λs

. (9)

Let us note that ς has units of length. The unit of length
might be relatively big or small with respect to the size of
the system. Then, equations (5) and (6) explicitly become:

ςR
λs

=
(
1− κ− γ1

)
υR −

(
γ2 + ω

)
υI , (10)

ςI
λs

=−
(
γ2 − ω

)
υR +

(
1− κ+ γ1

)
υI . (11)

In relation to the integration process of the geodesic devi-
ation equation, it is probably worthwhile to mention that
while on the right hand side of the above equations, the υR
and υI are evaluated at the observer position, on the left
hand side the ςR and ςI are evaluated at the source posi-
tion. Since it is a 2-dimensional system we need to consider
two independent initial conditions. Due to the fact that we
are in the galaxy and that a possible disk around Sagittar-
ius A∗ would probably sustain a very small angle, we have
considered in the numerical calculation a couple of initial
conditions; just to see if the computation was sensible to
them.

The first standard choice for initial conditions is to take(
ςR1

ςI1

)∣∣∣∣
λ=0

=

(
0
0

)
, (12)(

υR1

υI1

)∣∣∣∣
λ=0

=
1[L]

λs

(
1
0

)
, (13)

and(
ςR2

ςI2

)∣∣∣∣
λ=0

=

(
0
0

)
, (14)(

υR2

υI2

)∣∣∣∣
λ=0

=
1[L]

λs

(
0
1

)
, (15)

where L is the unit of length (which it could be taken as λs)
and which yields the final linear system of equations for the
quantities κ, γ1, γ2 and ω:

ςR1

[L]
=
(
1− κ− γ1

)
, (16)

ςI1
[L]

=−
(
γ2 − ω

)
, (17)

ςR2

[L]
=−

(
γ2 + ω

)
, (18)

ςI2
[L]

=
(
1− κ+ γ1

)
, (19)

or equivalently

κ =1− ςR1 + ςI2
2[L]

, (20)

γ1 =
ςI2 − ςR1

2[L]
, (21)

γ2 =− ςI1 + ςR2

2[L]
, (22)

ω =
ςI1 − ςR2

2[L]
. (23)

It is worthwhile to mention that in a numerical work the
choice of the unit of length [L] is an important detail to have
in mind, since; although the geodesic deviation equation is
linear, and therefore we would be free to use any magni-
tudes, from the numerical point of view, one does not want
to have very different orders of magnitude for the couple sys-
tem of ordinary differential equations. This is precisely ad-
justed with the choice of unit of length. It is for this reason
that we have chosen now to introduce explicitly the choice
of unit of length in the notation.

The second set of initial conditions we have considered
is just a 45º rotation of the first one; namely, we take at the

MNRAS 000, 1–15 (0000)



4 E.F.Boero and O.M.Moreschi

observer position:(
ςR1

ςI1

)∣∣∣∣
λ=0

=

(
0
0

)
, (24)(

υR1

υI1

)∣∣∣∣
λ=0

=
1[L]

λs

(
1√
2
1√
2

)
, (25)

and(
ςR2

ςI2

)∣∣∣∣
λ=0

=

(
0
0

)
, (26)(

υR2

υI2

)∣∣∣∣
λ=0

=
1[L]

λs

(
− 1√

2
1√
2

)
. (27)

These equations yield the final linear system of equations
for the quantities κ, γ1, γ2 and ω:

ςR1

[L]
=
(
1− κ− γ1

) 1√
2
−
(
γ2 + ω

) 1√
2
, (28)

ςI1
[L]

=−
(
γ2 − ω

) 1√
2

+
(
1− κ+ γ1

) 1√
2
. (29)

ςR2

[L]
=−

(
1− κ− γ1

) 1√
2
−
(
γ2 + ω

) 1√
2
, (30)

ςI2
[L]

=
(
γ2 − ω

) 1√
2

+
(
1− κ+ γ1

) 1√
2
, (31)

or equivalently

κ+ ω =1− ςR1 + ςI2√
2[L]

, (32)

γ1 + γ2 =
ςI2 − ςR1√

2[L]
, (33)

−γ1 + γ2 =− ςI1 + ςR2√
2[L]

, (34)

−κ+ ω =− 1 +
ςI1 − ςR2√

2[L]
; (35)

so that

κ =1 +
1

2

(
− ςR1 + ςI2√

2[L]
− ςI1 − ςR2√

2[L]

)
, (36)

γ1 =
1

2

( ςI2 − ςR1√
2[L]

+
ςI1 + ςR2√

2[L]

)
, (37)

γ2 =
1

2

( ςI2 − ςR1√
2[L]

− ςI1 + ςR2√
2[L]

)
, (38)

ω =
1

2

( ςI1 − ςR2√
2[L]

− ςR1 + ςI2√
2[L]

)
. (39)

It important to note that the calculation of the magni-
fication factor µ, in terms of the final values of the deviation
vector, is independent of the initial angle choice and is given
by:

µ =
1

(1− κ)2 − (γ2
1 + γ2

2) + ω2
=

[L]

ςI2ςR1 − ςI1ςR2

. (40)

3 RAY-TRACING EQUATIONS

3.1 Null geodesics and the null geodesic deviation equation
in Kerr spacetime

In the simulation of the lensing effects of the material sur-
rounding the immediate vicinity of Sagittarius A∗ we will

assume as in Boero & Moreschi (2021) that the underling
geometry is given by the two parametric (M,a) Kerr line
element:

ds2 = (1− Φ) dt2 + 2Φa sin(θ)2dtdφ− Σ

∆
dr2

− Σdθ2 −
(
r2 + a2 + Φa2 sin2(θ)

)
sin(θ)2dφ2.

(41)

As usual M denotes the mass of the spacetime and a the
rotation parameter respectively and the functions Σ(r, θ),
∆(r) and Φ(r, θ) are given by

Σ = r2 + a2 cos(θ)2, (42)

∆ = r2 − 2rM + a2, (43)

Φ =
2Mr

Σ
. (44)

Beyond being quite ubiquitous to describe the expected
gravitational field in the neighbourhood of the central core of
a galaxy, Kerr metric has the nice feature that both geodesics
and null geodesic deviation equations acquire expressions
that permit a relatively easy treatment Carter (1966); Boero
& Moreschi (2020).

For numerical purposes the full system of equations can
be cast as a first order system as follows:

ṫ =
1

Σ∆

[
E
(

(r2 + a2)2 −∆ a2 sin(θ)2
)
− 2aMrLz

]
, (45)

ṙ =vr, (46)

v̇r =(vθ)2r
∆

Σ
+
a2

Σ
ṙθ̇ sin(2θ)− (vr)2

r∆ + (M − r) Σ

Σ∆

− ṫ2
M∆

(
r2 − a2 cos(θ)2

)
Σ3

+ 2ṫφ̇
aM∆

(
r2 − a2 cos(θ)2

)
sin(θ)2

Σ3

+ φ̇2 ∆ sin(θ)2

Σ3

(
rΣ2

− a2M
(
r2 − a2 cos(θ)2

)
sin(θ)2

)
, (47)

θ̇ =vθ, (48)

v̇θ =
a2Mr sin(2θ)

Σ3
ṫ2 −

2aMr
(
r2 + a2

)
sin(2θ)

Σ3
ṫφ̇

− a2 sin(2θ)

2Σ∆
(vr)2 − 2r

Σ
ṙθ̇ +

a2 sin(2θ)

2Σ
(vθ)2

+
sin(2θ)

2Σ3

( (
r2 + a2

)
Σ2

+ 2a2rM sin(θ)2
(
r2 + a2 + Σ

) )
φ̇2, (49)

φ̇ =
1

Σ∆

[
2EaMr + (Σ− 2Mr)

Lz
sin(θ)2

]
, (50)

ς̇R1 =υςR1, (51)

υ̇ςR1 =− ςR1Ψ0R − ςI1Ψ0I , (52)

ς̇I1 =υςI1, (53)

υ̇ςI1 =− ςR1Ψ0I + ςI1Ψ0R, (54)
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ς̇R2 =υςR2, (55)

υ̇ςR2 =− ςR2Ψ0R − ςI2Ψ0I , (56)

ς̇I2 =υςI2, (57)

υ̇ςI2 =− ςR2Ψ0I + ςI2Ψ0R. (58)

In the above expressions, the constants of motion E and
L along the central null geodesics are obtained through its
relation to the coordinates (ro, θo) of an stationary observer
and the directions of the incoming photons (αx, δz) through
the following expressions:

E = −
√

1− Φo, (59)

αx =
Lz

ro sin(θo)
, (60)

δz =− (±)

ro

[
K −

(
Lz

sin(θo)
− aE sin(θo)

)2
]1/2

, (61)

where K is Carter’s constant. It should be noticed that in
the numerical calculations we first choose αx and δz, from
which we infer, at the observer position, the values of the
constant of motion Lz andK; althoughK does not appear in
the evolution equations; but they both appear in the initial
conditions. The Weyl curvature scalar Ψ0 = Ψ0R + iΨ0I is
given by the compact expression(Boero & Moreschi 2020):

Ψ0 = − 3M5/3K2

2
(
r − ia cos(θ)

)5 ; (62)

where the constant K is a spin-weight quantity given by:

K =
i
√

2

M1/3

[
δzro − i

(
− aE sin(θo) + αxro

)]
, (63)

and satisfies KK̄ = 2M−2/3K2.
The appropriated initial conditions for the geodesic

equation are

t0 =to = 0, (64)

r0 =ro, (65)

vr0 =−
√
R(ro)

Σo
, (66)

θ0 =θo, (67)

`θ0 =±
√
Θ(θo)

Σo
, (68)

φ0 =φo = −π
2
, (69)

where the functions R(r) and Θ(θ) are defined as

R(r) =
(
E
(
r2 + a2

)
− aL

)2
−K∆(r), (70)

Θ(θ) =K −
(

L

sin(θ)
− aE sin(θ)

)2

. (71)

For the geodesics deviation equations one can use for exam-
ple either of the choices previously described in the section
2, namely the set of initial conditions (12) - (15) or (24) -
(27).

3.2 Simple accretion disc model in Kerr

Our working assumption is of a geometrically thin disk,
where the matter motion is confined to the equatorial plane,

with circular orbits; that is, we neglect the radial component
of the velocity in this model. Assigning the label ’e’ to an
emitter, then its motion is characterized by the values of ra-
dial and angular coordinates (r = re, θ = π/2), and by its

four velocity uae =
(
ṫe, 0, 0, φ̇e

)a
; in such a way that we have

the following equations of motion:

r2e ṫe =
1

∆e

[
Ee

(
(r2e + a2)2 −∆ a2

)
− 2aMreLe

]
, (72)

0 =
(
Ee(r

2
e + a2)− aLe

)2
−∆(r2e +Ke), (73)

0 =Ke − (Eea− Le)2, (74)

r2e φ̇e =
1

∆

[
2EeaMre + (r2e − 2Mre)Le

]
. (75)

As explained in our previous article, the constants of
motion can be calculated, following Chandrasekhar (1983),
so that, using

u = 1/re, (76)

and

Q± = 1− 3Mu± 2a
√
Mu3; (77)

one then obtains that the values of the energy Ee and an-
gular momentum Le are given by:

Ee =
1√
Q∓

(
1− 2Mu∓ a

√
Mu3

)
, (78)

and

Le = ∓
√
M√
uQ∓

(
a2u2 + 1± 2a

√
Mu3

)
; (79)

where upper sing applies to retrograde orbits while lower
sign applies to direct orbits.

The range of validity of the these equations has been
discussed in our previous article; we here just note that call-
ing rc the relevant root of Q, then for r+ ≤ r < rc we will
use the same values of energy and angular momentum, as
those for the last stable orbit.

In this respect, let us recall that the unstable circular
photon orbit on the equatorial plane is given by

rc = 2M

(
1 + cos

(
2

3
arccos

(
± a

M

)))
; (80)

where upper sing applies to retrograde orbits while lower
sign applies to direct orbits.

For the calculation of the flux we need the factor

1/(1 + z)4 = 1/(ube`b)
4, (81)

where

gabu
a
e`
b =Eeṫ− Leφ̇. (82)

4 SIMULATED IMAGES WITH GRAVITATIONAL
LENS MAGNIFICATION AND RED/BLUESHIFT
EFFECTS

4.1 Basic model

In this work we use for the mass of the supermassive black
hole the value published in Abuter et al. (2022), which is
M = 4.3× 106M�.
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6 E.F.Boero and O.M.Moreschi

The direction of the angular momentum was deduced
from reference Reid & Brunthaler (2020), interpreting the
apparent motion of Sgr A∗, as due to the motion of the solar
system, and its surroundings around the center supermassive
black hole. In this way we assign the direction of the angular
momentum to be 30.22◦ south of west direction.

4.2 Image from the EHT Collaboration of Sagittarius A∗

In Fig. 1 we reproduce the EHT image of Sagittarius A∗,
that we use as our main reference for this work. The image
is a reconstruction made from observations taken on April
7 of 2017; it consists of the average of another four images,
each one of them obtained from a larger set of reconstruc-
tions. According to the EHT, these four groups were a conve-
nient way to manage the analysis of the observed differences
shown by the several resulting images with the diverse pro-
cessing pipelines employed. Three of the four clusters were
intended to separate ring structures having a salient bright
spot at different sectors of the image and the fourth one
group intended to detect non-ring morphologies. The rela-
tive contribution of each cluster to the final image can be
seen in fig. 13 of Akiyama et al. (2022c); in particular, it
shows that most of the reconstruction obtained are those
having bright spots at north-west and south-west position
angle (PA). Then, the results presented exhibit some de-
pendency on the choice of parameter used by the imaging
pipelines as well as the imagine procedure itself. The ob-
servational challenges related with the imaging process of
Sagittarius A∗ and the remaining degeneracy in the final re-
sults leave several open questions. For instance, does it be-
comes appropriated to consider averages of a set of images
in order to picture features of the object under study? Since
different reconstruction methods produce different features
one could ask which of them are physically representative
of the source. A common feature that also appears in most
of the reconstructed images is a bright ring, but since the
reconstruction algorithm needed additional input, the ques-
tion still remains if the choices of parameter has been the
optimum. Some of these points have been addressed in ref-
erence Akiyama et al. (2022c) (see section 7.5) pointing that
non-ring structures are very unlikely.

The presence of an elliptical ring structure in the image
of EHT, suggests a source which is observed fairly face-on.
This has been our first assumption that we study in detail
in subsection 4.3: while in subsection 4.4 we will consider
another geometry.

Beyond the three brighter regions shown in the image; it
is somehow striking the elliptical shape, of the visible back-
ground structure, that it could suggest a matter distribution
more or less with the shape of an inclined disk. What is strik-
ing is that the angle of the semimajor axis, of this structure,
is not contained in the plane of the galaxy. Also the bright
region on the top of this image, supports this interpretation
of an inclined disk.

In any case, for these reasons we have studied the pos-
sibility that there were a thin disk with the orientation sug-
gested for this image. This is analysed in the next subsection
4.3. But also, in subsection 4.4 we study the more natural
expected situation, that the projected angular momentum
of the black holeis aligned with the angular momentum of
the galaxy.

4.3 Graphs with angular momentum aligned
perpendicularly to the elliptical shape of the EHT
image

In this subsection we show the graphs corresponding to im-
ages calculated with an angular momentum of the black hole,
whose projection coincide with the perpendicular direction
to the semi-mayor axis of the elliptical image published by
the EHT Collaboration team for Sagittarius A∗. We use
the following values of iota: ι = −0.1745, ι = −0.3490,
ι = −0.5235, ι = −0.6980, ι = −0.8725, ι = −1.0470,
ι = −1.2215, ι = −1.3960; corresponding to degrees of −10o,
−20o, −30o, −40o, −50o, −60o, −70o, −80o, of the angle of
the black hole angular momentum with the plane of the im-
age. From left to right, in each figure we show the images
corresponding to a = 0.98, a = 0.75, a = 0.50, a = 0.25 and
a = 0.00 respectively.

The comparison of images is very complicated, and it is
difficult to have a universal way to be applied to any situa-
tion. In our case, we use our understanding of the possible
astrophysical situation, but we also use a direct numerical
measure employing the correlation coefficient of the compar-
ison of the EHT image with our images. This is not an ideal
measure, but it provides a minimum information of coinci-
dence between images. In particular we will see in this set
that high values of the correlation coefficient do not neces-
sarily provide good coincidence of the images. We have en-
counter the same problematic in our previous work (Boero
& Moreschi 2021) which can be consulted for further expla-
nation.

In Fig. 10 we present the graph of the correlation coef-
ficient between the EHT image and our images.

It can be seen that the position of the lump, in our
images, with the highest intensity does not coincide with
none of the three most intense zones, seen in the elliptical
EHT image. For this reason in the next subsection we study
images where the projection of the angular momentum of
the black hole, coincides with the expected direction for the
angular momentum of the galaxy.

4.4 Graphs with angular momentum aligned with the
angular momentum of the galaxy

The rather high values of the correlation coefficient shown in
Fig. 10 is not convincing evidence for us that the synthetic
images are giving a good representation of the EHT image.
In fact, one can clearly notice that the morphology of them
are very different, and this is a quality that is not meassured
by the correlation coefficient.

From figure 11 to 20 we show the graphs correspond-
ing to images calculated with an angular momentum of the
black hole, whose projection coincide with that of the angu-
lar momentum of the galaxy. From left to right, in each fig-
ure we show the images corresponding to a = 0.00, a = 0.25,
a = 0.50, a = 0.75 and a = 0.98 respectively.

It should be notice that due to the small inclination of
the disc, simulated images require a very good control of nu-
merical errors since magnification effects becomes divergent
near the emission disc region.

For convenience we also present the table of the corre-
lations that produces the graph of Fig. 21.
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Figure 2. ι = −0.1745 = −10◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 3. ι = −0.3490 = −20◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 4. ι = −0.5235 = −30◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 5. ι = −0.6980 = −40◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 6. ι = −0.8725 = −50◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

MNRAS 000, 1–15 (0000)
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Figure 7. ι = −1.0470 = −60◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 8. ι = −1.2215 = −70◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 9. ι = −1.3960 = −80◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 10. Comparison of the above graphs, with big angles, against the EHT image, through the calculation of the correlation, as

explained in the text.
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Figure 11. ι = −0.0873 = −5◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 12. ι = −0.0300 = −1.72◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 13. ι = −0.0030 = −0.172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 14. ι = −0.0003 = −0.0172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 15. ι = −10−6 = −0.00005729◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.
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Figure 16. ι = 10−6 = 0.00005729◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 17. ι = 0.0003 = 0.0172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 18. ι = 0.0030 = 0.172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 19. ι = 0.0300 = 1.72◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

Figure 20. ι = 0.0873 = 5◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.

MNRAS 000, 1–15 (0000)
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Figure 21. Comparison of the above graphs, with small angles, against the EHT image, through the calculation of the correlation, as
explained in the text. The ι axis has the logarithmic scale defined by ln(ιe106), where e is Euler number; so that the small angles are

magnified.

Figure 22. Superposition of best candidates with the original image. These are from left to right, the cases: a = 0.50 with ι = −0.003,

a = 0.98 with ι = −0.030 and a = 0.50 with ι = −0.030. It can be seen that the first case shows the best match of the local maximum
at the lower right of the image.

0.4969 0.4891 0.5144 0.5140 0.4946

0.5069 0.4937 0.5289 0.5256 0.5290

0.5054 0.4894 0.5646 0.4715 0.4388
0.4968 0.5131 0.4779 0.4143 0.4169

0.4816 0.4324 0.4279 0.4505 0.4395

0.4589 0.4593 0.4312 0.4460 0.4368
0.5142 0.4698 0.4438 0.3825 0.3771
0.5057 0.4889 0.4944 0.4375 0.4194
0.4919 0.4896 0.5156 0.5130 0.5003
0.4590 0.4376 0.4818 0.4915 0.4743

Table 1. Table of values of the correlation for small angles, as

shown in Fig. 21.

4.5 End point of null geodesics in Kerr-Schild coordinates

We have presented two sets of simulated images using as a
physical model that of a thin disk with different equatorial
inclinations with respect to the line of sight, and also for
various values of the angular momentum parameter a. For
reasons that are being discussed, we take as our best model,

the one characterized by the values a = 0.5 and ι = −0.003.
But the question we would like to tackle now, is, where do
all these ray tracing calculation reach, in the vicinity of the
black hole? The question is relevant to understand the na-
ture of the image one is generating. The first thing to clar-
ify is the choice of a coordinate system to use, in order to
make graphs that have some geometrical meaning that is
not corrupted by a bad behavior of the coordinate system;
as is known to happen with the Boyer-Lindquist coordinates
in the vicinity of the event horizon. Our choice is the Kerr-
Schild coordinate system, that is naturally defined when one
makes the corresponding decomposition of the Kerr metric,
in the so called Kerr-Schild form. In this way we have at our
disposal a set of coordinates (t, x, y, z) that we use for these
graphs.

In the graphs of Fig. 23 we present the end points of the
integration in three different planes. In the top-left graph, it
is impressive to see that those trajectories that reach the
disk, are almost aligned along the line in the equatorial
plane, that is opposite to the line of sight. That is, one has
to have in mind the the observer in these coordinates is lo-
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Figure 23. The Kerr-Schild coordinates are adapted to the geometry of the black hole, so that the equatorial plane is z = 0, and the
angular momentum of the black hole points in the direction of the positive z’s. The top-left graph, using (x, y) coordinates, shows the
end points of the ray-tracing to the past, for all values of z; where positive y means the zone away from the observer, that is, in the

opposite side of the black hole. The top-right graph, using (x, z) coordinates, shows the end points of the null geodesics to the past, for
all values of y, the bottom graph, using (y, z) coordinates, shows the end points of the ray-tracing to the past, in this plane for all values

of x.

cated somewhere far away with big values of the negative y
coordinate. In other words, with these geometrical settings,
the observer only sees a very small portion of the disk which
is just opposite to the line of sight; since for this small angle,
the front part is almost invisible; in fact, non of our geodesics
reach any other region of the disk. This is in spite of the
fact that we have made the calculation for 1008 geodesics
in the plane of the expected image. The upper part of this
graph, shows an umbrella type shape, which just shows our

choice for the end condition, for those geodesic that have not
reached the disk. In the bottom part of the same graph, one
can see an sphere like object, which is just the condition that
the geodesics have reached the event horizon. For this rather
low angular momentum, one can only see a peculiar spread
of the end points; where in the whole graph, crosses indicates
geodesics that start above the equatorial plane and circles
denote geodesics that start below the equatorial plane. The
fact that the spread in the disk is so small, also indicates the

MNRAS 000, 1–15 (0000)
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degree of precision of our calculations. In particular we have
been using quadruple precision with 2.4 × 10−22 tolerance
for the Runge-Kutta integrator.

In the top-right graph, showing the (x, z) values, one
can see the umbrella type shape, from another angle. A big
number of end points, at the opposite side of the black hole,
are difficult to see in this graph, since they are confused with
the end points of null geodesics that reach the event horizon,
and form the sphere like shape object, more or less in the
center of this graph.

Finally in the bottom graph of Fig. 23, one can see the
same distribution from a different angle; in this case the
(x, z) coordinates. Since the equatorial plane coincides with
z = 0, one can see that the condition for the null geodesics
to reach the disk is satisfied with very high precision; which
are all those points outside the event horizon with z = 0.
The umbrella type shape is now shown to the right of this
graph.

4.6 The possible bar structure on the disk

In our previous article on the construction of synthetic im-
ages of M87(Boero & Moreschi 2021), we recurred to a bar
structure on the disk in order to build images that resemble
in a better way the corresponding EHT image of the su-
permassive black hole. For this reason, we have also study
for this case of Sgr A∗, the consequences of introducing
this type of structure. The results did not help in provid-
ing better images, that where closer to the aspects found in
the EHT image of Sgr A∗. And the reason for this, can be
understood in terms of the graphs of Fig. 23, discussed pre-
viously. That is, since for this geometric configuration, the
only observed part of the disk lies on a narrow sector, on the
disk, at the opposite region of the line of sight; the introduc-
tion of a bar structure with higher temperature, can only be
seen if it is placed on this narrow region. And therefore its
effect is to slightly change the original image, without bar
structure. Consequently we have not included those graphs
in this article, since they do not contribute to the search for
the explanation of the other structure shown in the EHT
image of Fig. 1.

4.7 Numerical comparison of the images

The main part of the construction process of the images, is
the analysis of the general aspects of EHT image. Guided
by the suggested geometry of Fig. 1, we have made a couple
of configuration for our disk model, in order to try to con-
struct images that resemble that of the EHT team. But it
is convenient to also have at hand some numerical measure
for the comparison of our images with that of EHT. For this
reason, as we did in our previous work, we have also con-
sidered the correlation between two images. This is a very
limited type of measure, that does not include information
on the structure of each image; but in any case it is a very
natural type of measure.

The comparison of our first configuration, with big an-
gles between the equatorial plane of the disk and the plane
of the galaxy are shown graphically in Fig. 10. While, the
comparison of our second configuration, with small angles
between the equatorial plane of the disk and the plane of

the galaxy are shown graphically in Fig. 21. The correspond-
ing table for this last graph is presented in table 4.4; where
one can see that our chosen configuration of a = 0.5 and
ι = −0.003, has the highest value.

5 PHOTON REGIONS AND SILHOUETTE OF THE
BLACK HOLE

In a spherically symmetric spacetime it is natural to study
the null geodesics that have constant radial coordinate; and
so define the corresponding photon region. Surprisingly, in
Kerr spacetime, the analog question also has meaning. It
should be noticed that since the spacetime is not spherically
symmetric, it is not trivial to ask whether there exists a
natural radial coordinate; but Kerr’s radial coordinateKerr
(1963) r seems to be the answer. In fact, there exist null
geodesics with r =constant, and they have been called also
the generators of the ’photon regions’. However only recently
there have been claimsCederbaum & Jahns (2019) that this
set contains the only trajectories of photons that do not go
cross the horizon or escape to infinity. In relation to all this,
it is probably worthwhile to point out that the radial and
angular coordinates (r, θ) used in the Boyer-LindquistBoyer
& Lindquist (1967) form of the metric, coincide with the
original (r, θ) presented in Kerr’s article.

Although the photon regions have been studied in sev-
eral works, we are only concerned here with the silhouette
that an observer would see of a black hole with angular mo-
mentum, if seen with a lighted background.

Then, we are concerned with the null geodesics that
satisfy r = rp, and so, ṙ = 0 and r̈ = 0; or equivalently,
R = 0 and dR

dr
= 0, which can be expressed as:

0 =
(
E
(
r2p + a2

)
− aL

)2
−K∆(rp), , (83)

and

0 = 2Erp
(
E
(
r2p + a2

)
− aL

)
−K(rp −m). (84)

From these one obtains

∆(rp)

(rp −m)
=

(
E
(
r2p + a2

)
− aL

)
2Erp

; (85)

where we have divided the above equations. Note that E is
of order one and negative, while |aL| << |Er2p|; implying

that the
(
E
(
r2p + a2

)
− aL

)
is negative, so that (85) has

the correct sign. Then, one has

L =
1

a

(
E
(
r2p + a2

)
− 2Erp∆(rp)

(rp −m)

)
; (86)

and

K =
(2Erp)

2∆(rp)

(rp −m)2
. (87)

One also must satisfy

K −
(

L

sin(θp)
− aE sin(θp)

)2

> 0. (88)

Then, (86) gives L(rp), while (87) gives K(rp). To ob-
tain the silhouette one must consider those geodesics that
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touch the outer boundary of this regions, which is charac-
terized by the condition that θ̇p = 0 or equivalently

K(rp)−
(
L(rp)

sin(θp)
− aE sin(θp)

)2

= 0. (89)

This allows to express rp(θp), since one has

(2Erp sin(θp))
2∆(rp)

(rp −m)2
=
(
L(rp)− aE sin(θp)

2)2 , (90)

or

∆(rp)
(2Erp sin(θp))

2

(rp −m)2
=(

1

a

(
E
(
r2p + a2

)
− 2Erp∆(rp)

(rp −m)

)
− aE sin(θp)

2

)2

,

(91)

so that

∆(rp)
(2arp sin(θp))

2

(rp −m)2
=(

r2p + a2 − 2rp∆(rp)

(rp −m)
− a2 sin(θp)

2

)2

=(
r2p + a2 cos(θp)

2 − 2rp∆(rp)

(rp −m)

)2

.

(92)

Taking the square root one would have a ± relation, but we
can build this in the definition of ϑp with a range of [−π, π];
so that we can write√

∆(rp)2arp sin(ϑp) =

(rp −m)
(
r2p + a2 cos(ϑp)

2)− 2rp∆(rp);
(93)

which provides for us rp(ϑp). Defining f(rp) as

f(rp) =(rp −m)
(
r2p + a2 cos(ϑp)

2)− 2rp∆(rp)

−
√

∆(rp)2arp sin(ϑp);
(94)

one could solve for rp using the standard techniques of root
finding.

Then we obtain L(ϑp) and K(ϑp); from which we draw
the silhouette using celestial coordinates.

Note that when a = 0 one has

f(rp) =(rp −m)r2p − 2rp∆(rp)

=r3p −mr2p − 2rp(r
2
p − 2mrp)

=− r3p + 3mr2p;

(95)

so that rp = 3m in this case.

6 FINAL COMMENTS

As commented previously, the EHT collaboration has used
as guiding idea, the structure of rings for the construction
of their images. The question of whether Sgr A∗ is ap-
propriately described by a ring, is so central to the EHT
work(Akiyama et al. 2022c) that they dedicate a subsec-
tion to this point. They affirm there that: “there are a small
number of non-ring images that fit the data well and cannot
easily be excluded through additional tests.”

In our work we have applied as guiding idea the struc-
ture of a disk, which was very successful in the construction
of images for the M87 system. Since they also consider the

with of the rings, one may wonder whether there could be
some kind of intersection between the two main ideas of
the models. We can point out, that since the main starting
physical model are rather different, also the language is dif-
ferent; but it should be remarked that they concentrate on
rings that are mostly face-on, in contrast to our assumption
of inclined thin accretion disks, that are mostly edge-on.

The main EHT image shown in Fig. 1 shows a basic
structure of three local intensity maxima located approxi-
mately at position angles of: (A: 70◦), (B: 220◦) and (C:
330◦); on a disk like shape. Interpreting this configuration
as a possible disk, which was inclined to the observer, and
assuming that structure C indicated the opposite side of the
disk, we first carried out a series of images, for the iota angle
in the range ι ∈ [−10◦,−80◦], and with the angular param-
eter a with values a = [0, 0.25, 0.50, 0.75, 0.98]. We conclude
that the images so constructed do not represent consistently
the EHT image of Sgr A∗. For this reason we next per-
formed calculation of images that assume the more natural
configuration of a disk, with small angle variations with re-
spect of the plane of the galaxy. In all cases we have assumed
the disk is located in the equatorial plane of the black hole,
and therefore, its angular momentum is perpendicular to the
disk. With this second set of images, we find that one can
explain the structure B of the EHT image. The model we
have used does not account for the other structures A and
C of the EHT image.

It should be remembered that the final EHT image is
the average of four different images that they show in their
Figure 13 graphs. However it is noticed that only structure
B is persistent in the four basic images; probably indicating
that it is a stable physical structure observed by the EHT
team.

This fact is reinforced if we take a look at the first row in
Figure 27 of the EHT article Akiyama et al. (2022d) which
we reproduce here in Fig. 25. The important graphs, that
we reproduce in Fig. 25 are the first and the third; where
they show the images that are obtained from the Themes
image algorithm. In their paper III, in which they present the
preferred image of Sgr A∗, they have chosen to use the data
of April 7. However, it is noticeable that the Themes image
from April 6, shows a prominent local intensity maximum
more or less at the position of the local intensity maximum
or our preferred image shown in Fig. 24. This gives support
to our conjecture that structure B corresponds to an intrinsic
persistent structure of Sgr A∗.

As it has been mentioned in the EHT articles, the ac-
quisition of the data and its processing is a very difficult task
that forces the team to use models, with different weights,
in the reconstruction of images. We hope our work can con-
tribute to the adjustments of pipelines that are used in those
reconstructions processes; since different priors produce var-
ious outcomes.

Data Availability

No new data were generated or analysed in support of this
research. The numerical calculation is completely described
in the article.
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Figure 24. Image of the flux with all magnifications for Sagittarius A∗ in the case of a = 0.50 and ι = −0.003; where the grey line shows

the silhouette for the case of a back illumination of the supermassive black hole.

Figure 25. Reproduction of two graphs first row of Figure 27 of paper IV of the EHT work on Sgr A∗; they correspond to April 6 and

April 6+7 of the Themis pipeline. The third graph on the right is the copy of our image at the scale of the other EHT images.
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