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Laprida 854, (X5000BGR) Córdoba, Argentina.
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ABSTRACT
The images of Sagittarius A* produced by the Event Horizon Telescope (ETH) Collab-
oration in 2022 present features that were associated with a emission ring consistent
with what is expected from an accretion disc surrounding the supermassive black hole
at the center of our Galaxy. We study different configurations of a simple accretion
disc model that became successful in reproducing the main features observed in M87*
together with a ray tracing-technique that accounts for magnification effects along
null geodesic bundles. In particular, we explore in detail the case of nearly edge-on
configurations which are a priori the most expected configurations for a relaxed disc.
Our results show that these scenarios remain viable when compared with images re-
constructed with data from April 6 and 7 of 2017.


Key words: gravitational lensing: strong – gravitation – black hole physics


1 INTRODUCTION


The immediate surroundings of supermassive black holes
(SMBH) in scales of a few Schwarzschild radius were re-
solved for the first time in recent years Akiyama et al.
(2019a, 2022a). Utilizing the Very Long Baseline Interfer-
ometry (VLBI) facilities, comprised in the Event Horizon
Telescope (EHT), the first images corresponding to M87*
at the center of the nearby elliptical galaxy M87(Akiyama
et al. 2019b) and Sagittarius A*(Akiyama et al. 2022c), the
SMBH hosted in our Galaxy were obtained. These observa-
tions were carried in the millimiter radio wave band attain-
ing a resolution through the several campaigns of approxi-
mately ∼ 20µarcseconds. Most of the reconstructed images
using different methods often reveal a prominent ring-like
structure, which corresponds to the emission from hot gas
around the event horizon of the black holes. Comparison
with a bank template of GRMHD numerical simulations in-
dicates that indeed the geometry of the central object is
compatible with a Kerr black hole. However, due to the in-
trinsic limitations in the imaging process, the interpretation
of the diverse features of the images is not completely clear
due to the degeneracy in the models that could explain it.


? E-mail: ezequiel.boero@unc.edu.ar
† E-mail: o.moreschi@unc.edu.ar


We have studied in the past the case of M87* Boero
& Moreschi (2021) assuming a simple scenario for the emis-
sion in terms a disc region having two temperatures as com-
monly observed in GRMHD simulations and we obtained
images with a new approach that combines the integration
of geodesics and geodesic deviation equation in an very ef-
ficient way Boero & Moreschi (2020). As a result we found
that our images could fit very well reported final images of
the EHT Collaboration.


In this article we focus on the most recent EHT pub-
lications on Sagittarius A*Akiyama et al. (2022a,b,c,d,e,f);
we carry a similar analysis to our previous work, motivated
by the good results we had obtained; and noting that both
SMBH have almost the same angular size.


Both systems are catalogued as low luminosity AGNs
(LLAGNs) and characterized by accretion rates satisfying
Ṁ � Ṁcrit with c2Ṁcrit = L̇Edd; The Eddington’s luminos-
ity limit LEdd becomes a useful parameter that determines
in most accretion model the characteristic of the disc and
its emission properties. For the case of M87* and Sgr A∗ the
discs is expected to present properties consistent with emis-
sion coming from an optically thin disc where very hot flows
are accreted mainly through advection processes (Shapiro
et al. 1976; Ichimaru 1977; Yuan & Narayan 2014). The ma-
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2 E.F.Boero and O.M.Moreschi


terial in the vicinity of the BH is an ionized plasma with
electrons and ions having different temperatures.


The EHT Collaboration has provided a physical sce-
nario for the geometry and the accretion flow orbiting Sgr
A∗ based on comparison of the data with several synthetic
images from diverse models. From their analysis they claim
that the orbiting plasma is most probably described by mag-
netically arrested disc (MAD) which tend to be strongly
magnetized.


As in their previous work on M87, the EHT team em-
phasizes that the images could be mainly understood in
terms of a ring structure; however we have also shown in our
article on the same system, that the images might as well be
understood in terms of the natural structure of a disk model.
What is somehow striking in the described construction pro-
cess used by EHT Coolaboration in the Sgr A∗(Akiyama
et al. 2022c) case is the fact, see for example their figures
7, 11 and 12, that the models involving rings, crescents,
disks and other general relativistic magnetohydrodynamic
(GRMHD) calculations, are almost face-on configurations.
Since as observers we are situated more or less in the equa-
torial plane of the galaxy, it would be natural to assume first
a ring or disk structure that it would be close to its plane
of symmetry, that is, one would expect to have an edge-on
view. We tackle this issue in this article.


As it was the case of the previous works of
EHT(Akiyama et al. 2019a), the spectral energy distribution
of such systems presents features that are thought to be asso-
ciated with emission from an optically thin and geometrically
thick accretion disk with an observed brightness tempera-
ture in radio wavelengths in the range of 109 − 1010K. The
expectation, as it was the case of M87, the emission collected
at sub-millimeter wavelength of (∼ 230GHz) is thought to
be weakly absorbed by the surrounding media, allowing to
detect the immediate vicinity of the event horizon of the
associated SMBH.


Whenever possible, for tensors and vectors objects, we
will employ standard abstract index notation with Latin let-
ters a, b, c, ... for tensor fields. Our choice of signature for the
spacetime metric gab is (+,−,−,−).


One of the main characteristics of the observation of
Sgr A∗ is its time variability. In turn, this complicates
considerably the reconstruction of an image from the ob-
served data. For this reason as mentioned in (Akiyama et al.
2022c,d) the EHT team must rely on different kind of mod-
els. In fact, their methodology for the construction of im-
ages is to use a variety of models for the matter distribution
around the supermassive black hole. Due to the unexpected
geometry suggested for the EHT image, here shown in Fig.
1, we study first a thin accretion disk whose plane is inclined
with respect of the plane of the galaxy, us suggested by the
EHT image. We have considered a big range for the pro-
jected angular momentum of the black hole with the line of
sight, and also a range of values for the possible total angular
momentum of the black hole. Since we were not convinced
with the results of this study, that we present below, we
have also considered the more natural assumption of an ac-
cretion disk and black hole angular momentum that have
small angles with respect to the plane of the galaxy and an-
gular momentum of the galaxy respectively. In our opinion,
this last model gives better results than the previous one.


The organization of the article is as follows. In the next


Figure 1. Image from the EHT Collaboration of Sagittarius A∗;
where they show an average of reconstructed images for April 7.


second section we review the basic equations that we use
in our construction. Since they were discussed at length in
our previous article (Boero & Moreschi 2021) we present
here a shorter summary of the basic dynamical equations
for the deviation vector and the optical scalars equations. In
section 3 we describe the geometry, the evolution equations,
the conserved quantities, the initial conditions and details of
the matter model. Our image constructions are presented in
section 4. We take the opportunity in this case to also present
the calculation of the expected silhouette of the black hole
for different configurations in section 5. We reserve the final
section 6 for some recapitulation and comments; where we
argue that our resulting image is very closely related to the
April 6 image coming from the their Themis pipeline.


2 EXACT GRAVITATIONAL LENS OPTICAL
SCALARS


2.1 The basic equations


Although we have discussed the notion of ‘exact gravita-
tional lens optical scalars’ in the past(Boero & Moreschi
2021), we here introduce an alternative for the initial con-
ditions, improve the notation and correct a typo of the last
version.


The general setting is to consider the null geodesics in
the past null cone of an observer moving with 4-velocity va.
The tangent vectors to the null geodesics are denoted by
`a, which are past directed; so that are normalized by the
condition:


`ava = −1, (1)


and since they are null geodesics, we also have


`a∇a`b = 0, (2)


where ∇a is the covariant derivative in terms of abstract
indices.


In order to calculate the optical scalars we need to intro-
duce the geodesic deviation vector ςa, in terms of a suitable
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null tetrad (`a,ma, m̄a, na) where ma and m̄a is a pair of
complex conjugated vectors and na an additional real null
vector. We choose the two complex vectors ma and m̄a to
be parallel propagated along the geodesic. Then, we express
the geodesic deviation vector as


ςa = ςm̄a + ς̄ma + η`a. (3)


Using that ςa must be Lie transported along the null
geodesics, one arrives at the geodesic deviation equations:


`a∇a
(
`b∇bςd


)
= R d


abc `
aςb`c; (4)


where R d
abc denotes the Riemann tensor. Then the task is


to solve the couple system of differential equations (2) and
(4).


2.2 Optical scalars


Let us define here explicitly the exact gravitational optical
scalars.


The situation we are considering is that of an observed
deviation δθi from a reference observed direction in the sky,
denoted by θ, corresponding to the direction of the null
geodesic described by `a. In the absence of gravitational ef-
fects one would detect the deviation δβi with respect to the
reference direction β. Then, the optical scalars κ, γ1, γ2 and
ω are defined through the linear relation between δθi and
δβi


δβi = Aij δθj , (5)


were the matrix Aij is given by


Aij =


(
1− κ− γ1 −γ2 − ω
−γ2 + ω 1− κ+ γ1


)
. (6)


Let us note that the component ς is complex, and that
their real and imaginary parts (ςR, ςI), can be used as com-
ponents in a real 2-dimensional plane; orthogonal to `a and
therefore they will be related to the angles δθi and δβi. We
will denote with υR and υI the derivatives of ςR and ςI re-
spectively, along the null geodesic `a. Then the initial con-
ditions for the couple differential equation, that is at the
observer position, are:


δθi ≡
(
υR
υI


)∣∣∣∣
λ=0


≡
(
` (ςR)
` (ςI)


)∣∣∣∣
λ=0


, (7)


and


ςi
∣∣∣
λ=0


=


(
ςR
ςI


)∣∣∣∣
λ=0


=


(
0
0


)
; (8)


where we are using λ to denote the affine parameter along
the null geodesic.


At the target point the affine parameter has the value
λs and then by definition one has


δβi ≡ 1


λs


(
ςR
ςI


) ∣∣∣∣
λ=λs


. (9)


Let us note that ς has units of length. The unit of length
might be relatively big or small with respect to the size of
the system. Then, equations (5) and (6) explicitly become:


ςR
λs


=
(
1− κ− γ1


)
υR −


(
γ2 + ω


)
υI , (10)


ςI
λs


=−
(
γ2 − ω


)
υR +


(
1− κ+ γ1


)
υI . (11)


In relation to the integration process of the geodesic devi-
ation equation, it is probably worthwhile to mention that
while on the right hand side of the above equations, the υR
and υI are evaluated at the observer position, on the left
hand side the ςR and ςI are evaluated at the source posi-
tion. Since it is a 2-dimensional system we need to consider
two independent initial conditions. Due to the fact that we
are in the galaxy and that a possible disk around Sagittar-
ius A∗ would probably sustain a very small angle, we have
considered in the numerical calculation a couple of initial
conditions; just to see if the computation was sensible to
them.


The first standard choice for initial conditions is to take(
ςR1


ςI1


)∣∣∣∣
λ=0


=


(
0
0


)
, (12)(


υR1


υI1


)∣∣∣∣
λ=0


=
1[L]


λs


(
1
0


)
, (13)


and(
ςR2


ςI2


)∣∣∣∣
λ=0


=


(
0
0


)
, (14)(


υR2


υI2


)∣∣∣∣
λ=0


=
1[L]


λs


(
0
1


)
, (15)


where L is the unit of length (which it could be taken as λs)
and which yields the final linear system of equations for the
quantities κ, γ1, γ2 and ω:


ςR1


[L]
=
(
1− κ− γ1


)
, (16)


ςI1
[L]


=−
(
γ2 − ω


)
, (17)


ςR2


[L]
=−


(
γ2 + ω


)
, (18)


ςI2
[L]


=
(
1− κ+ γ1


)
, (19)


or equivalently


κ =1− ςR1 + ςI2
2[L]


, (20)


γ1 =
ςI2 − ςR1


2[L]
, (21)


γ2 =− ςI1 + ςR2


2[L]
, (22)


ω =
ςI1 − ςR2


2[L]
. (23)


It is worthwhile to mention that in a numerical work the
choice of the unit of length [L] is an important detail to have
in mind, since; although the geodesic deviation equation is
linear, and therefore we would be free to use any magni-
tudes, from the numerical point of view, one does not want
to have very different orders of magnitude for the couple sys-
tem of ordinary differential equations. This is precisely ad-
justed with the choice of unit of length. It is for this reason
that we have chosen now to introduce explicitly the choice
of unit of length in the notation.


The second set of initial conditions we have considered
is just a 45º rotation of the first one; namely, we take at the
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4 E.F.Boero and O.M.Moreschi


observer position:(
ςR1


ςI1


)∣∣∣∣
λ=0


=


(
0
0


)
, (24)(


υR1


υI1


)∣∣∣∣
λ=0


=
1[L]


λs


(
1√
2
1√
2


)
, (25)


and(
ςR2


ςI2


)∣∣∣∣
λ=0


=


(
0
0


)
, (26)(


υR2


υI2


)∣∣∣∣
λ=0


=
1[L]


λs


(
− 1√


2
1√
2


)
. (27)


These equations yield the final linear system of equations
for the quantities κ, γ1, γ2 and ω:


ςR1


[L]
=
(
1− κ− γ1


) 1√
2
−
(
γ2 + ω


) 1√
2
, (28)


ςI1
[L]


=−
(
γ2 − ω


) 1√
2


+
(
1− κ+ γ1


) 1√
2
. (29)


ςR2


[L]
=−


(
1− κ− γ1


) 1√
2
−
(
γ2 + ω


) 1√
2
, (30)


ςI2
[L]


=
(
γ2 − ω


) 1√
2


+
(
1− κ+ γ1


) 1√
2
, (31)


or equivalently


κ+ ω =1− ςR1 + ςI2√
2[L]


, (32)


γ1 + γ2 =
ςI2 − ςR1√


2[L]
, (33)


−γ1 + γ2 =− ςI1 + ςR2√
2[L]


, (34)


−κ+ ω =− 1 +
ςI1 − ςR2√


2[L]
; (35)


so that


κ =1 +
1


2


(
− ςR1 + ςI2√


2[L]
− ςI1 − ςR2√


2[L]


)
, (36)


γ1 =
1


2


( ςI2 − ςR1√
2[L]


+
ςI1 + ςR2√


2[L]


)
, (37)


γ2 =
1


2


( ςI2 − ςR1√
2[L]


− ςI1 + ςR2√
2[L]


)
, (38)


ω =
1


2


( ςI1 − ςR2√
2[L]


− ςR1 + ςI2√
2[L]


)
. (39)


It important to note that the calculation of the magni-
fication factor µ, in terms of the final values of the deviation
vector, is independent of the initial angle choice and is given
by:


µ =
1


(1− κ)2 − (γ2
1 + γ2


2) + ω2
=


[L]


ςI2ςR1 − ςI1ςR2


. (40)


3 RAY-TRACING EQUATIONS


3.1 Null geodesics and the null geodesic deviation equation
in Kerr spacetime


In the simulation of the lensing effects of the material sur-
rounding the immediate vicinity of Sagittarius A∗ we will


assume as in Boero & Moreschi (2021) that the underling
geometry is given by the two parametric (M,a) Kerr line
element:


ds2 = (1− Φ) dt2 + 2Φa sin(θ)2dtdφ− Σ


∆
dr2


− Σdθ2 −
(
r2 + a2 + Φa2 sin2(θ)


)
sin(θ)2dφ2.


(41)


As usual M denotes the mass of the spacetime and a the
rotation parameter respectively and the functions Σ(r, θ),
∆(r) and Φ(r, θ) are given by


Σ = r2 + a2 cos(θ)2, (42)


∆ = r2 − 2rM + a2, (43)


Φ =
2Mr


Σ
. (44)


Beyond being quite ubiquitous to describe the expected
gravitational field in the neighbourhood of the central core of
a galaxy, Kerr metric has the nice feature that both geodesics
and null geodesic deviation equations acquire expressions
that permit a relatively easy treatment Carter (1966); Boero
& Moreschi (2020).


For numerical purposes the full system of equations can
be cast as a first order system as follows:


ṫ =
1


Σ∆


[
E
(


(r2 + a2)2 −∆ a2 sin(θ)2
)
− 2aMrLz


]
, (45)


ṙ =vr, (46)


v̇r =(vθ)2r
∆


Σ
+
a2


Σ
ṙθ̇ sin(2θ)− (vr)2


r∆ + (M − r) Σ


Σ∆


− ṫ2
M∆


(
r2 − a2 cos(θ)2


)
Σ3


+ 2ṫφ̇
aM∆


(
r2 − a2 cos(θ)2


)
sin(θ)2


Σ3


+ φ̇2 ∆ sin(θ)2


Σ3


(
rΣ2


− a2M
(
r2 − a2 cos(θ)2


)
sin(θ)2


)
, (47)


θ̇ =vθ, (48)


v̇θ =
a2Mr sin(2θ)


Σ3
ṫ2 −


2aMr
(
r2 + a2


)
sin(2θ)


Σ3
ṫφ̇


− a2 sin(2θ)


2Σ∆
(vr)2 − 2r


Σ
ṙθ̇ +


a2 sin(2θ)


2Σ
(vθ)2


+
sin(2θ)


2Σ3


( (
r2 + a2


)
Σ2


+ 2a2rM sin(θ)2
(
r2 + a2 + Σ


) )
φ̇2, (49)


φ̇ =
1


Σ∆


[
2EaMr + (Σ− 2Mr)


Lz
sin(θ)2


]
, (50)


ς̇R1 =υςR1, (51)


υ̇ςR1 =− ςR1Ψ0R − ςI1Ψ0I , (52)


ς̇I1 =υςI1, (53)


υ̇ςI1 =− ςR1Ψ0I + ςI1Ψ0R, (54)
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ς̇R2 =υςR2, (55)


υ̇ςR2 =− ςR2Ψ0R − ςI2Ψ0I , (56)


ς̇I2 =υςI2, (57)


υ̇ςI2 =− ςR2Ψ0I + ςI2Ψ0R. (58)


In the above expressions, the constants of motion E and
L along the central null geodesics are obtained through its
relation to the coordinates (ro, θo) of an stationary observer
and the directions of the incoming photons (αx, δz) through
the following expressions:


E = −
√


1− Φo, (59)


αx =
Lz


ro sin(θo)
, (60)


δz =− (±)


ro


[
K −


(
Lz


sin(θo)
− aE sin(θo)


)2
]1/2


, (61)


where K is Carter’s constant. It should be noticed that in
the numerical calculations we first choose αx and δz, from
which we infer, at the observer position, the values of the
constant of motion Lz andK; althoughK does not appear in
the evolution equations; but they both appear in the initial
conditions. The Weyl curvature scalar Ψ0 = Ψ0R + iΨ0I is
given by the compact expression(Boero & Moreschi 2020):


Ψ0 = − 3M5/3K2


2
(
r − ia cos(θ)


)5 ; (62)


where the constant K is a spin-weight quantity given by:


K =
i
√


2


M1/3


[
δzro − i


(
− aE sin(θo) + αxro


)]
, (63)


and satisfies KK̄ = 2M−2/3K2.
The appropriated initial conditions for the geodesic


equation are


t0 =to = 0, (64)


r0 =ro, (65)


vr0 =−
√
R(ro)


Σo
, (66)


θ0 =θo, (67)


`θ0 =±
√
Θ(θo)


Σo
, (68)


φ0 =φo = −π
2
, (69)


where the functions R(r) and Θ(θ) are defined as


R(r) =
(
E
(
r2 + a2


)
− aL


)2
−K∆(r), (70)


Θ(θ) =K −
(


L


sin(θ)
− aE sin(θ)


)2


. (71)


For the geodesics deviation equations one can use for exam-
ple either of the choices previously described in the section
2, namely the set of initial conditions (12) - (15) or (24) -
(27).


3.2 Simple accretion disc model in Kerr


Our working assumption is of a geometrically thin disk,
where the matter motion is confined to the equatorial plane,


with circular orbits; that is, we neglect the radial component
of the velocity in this model. Assigning the label ’e’ to an
emitter, then its motion is characterized by the values of ra-
dial and angular coordinates (r = re, θ = π/2), and by its


four velocity uae =
(
ṫe, 0, 0, φ̇e


)a
; in such a way that we have


the following equations of motion:


r2e ṫe =
1


∆e


[
Ee


(
(r2e + a2)2 −∆ a2


)
− 2aMreLe


]
, (72)


0 =
(
Ee(r


2
e + a2)− aLe


)2
−∆(r2e +Ke), (73)


0 =Ke − (Eea− Le)2, (74)


r2e φ̇e =
1


∆


[
2EeaMre + (r2e − 2Mre)Le


]
. (75)


As explained in our previous article, the constants of
motion can be calculated, following Chandrasekhar (1983),
so that, using


u = 1/re, (76)


and


Q± = 1− 3Mu± 2a
√
Mu3; (77)


one then obtains that the values of the energy Ee and an-
gular momentum Le are given by:


Ee =
1√
Q∓


(
1− 2Mu∓ a


√
Mu3


)
, (78)


and


Le = ∓
√
M√
uQ∓


(
a2u2 + 1± 2a


√
Mu3


)
; (79)


where upper sing applies to retrograde orbits while lower
sign applies to direct orbits.


The range of validity of the these equations has been
discussed in our previous article; we here just note that call-
ing rc the relevant root of Q, then for r+ ≤ r < rc we will
use the same values of energy and angular momentum, as
those for the last stable orbit.


In this respect, let us recall that the unstable circular
photon orbit on the equatorial plane is given by


rc = 2M


(
1 + cos


(
2


3
arccos


(
± a


M


)))
; (80)


where upper sing applies to retrograde orbits while lower
sign applies to direct orbits.


For the calculation of the flux we need the factor


1/(1 + z)4 = 1/(ube`b)
4, (81)


where


gabu
a
e`
b =Eeṫ− Leφ̇. (82)


4 SIMULATED IMAGES WITH GRAVITATIONAL
LENS MAGNIFICATION AND RED/BLUESHIFT
EFFECTS


4.1 Basic model


In this work we use for the mass of the supermassive black
hole the value published in Abuter et al. (2022), which is
M = 4.3× 106M�.
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The direction of the angular momentum was deduced
from reference Reid & Brunthaler (2020), interpreting the
apparent motion of Sgr A∗, as due to the motion of the solar
system, and its surroundings around the center supermassive
black hole. In this way we assign the direction of the angular
momentum to be 30.22◦ south of west direction.


4.2 Image from the EHT Collaboration of Sagittarius A∗


In Fig. 1 we reproduce the EHT image of Sagittarius A∗,
that we use as our main reference for this work. The image
is a reconstruction made from observations taken on April
7 of 2017; it consists of the average of another four images,
each one of them obtained from a larger set of reconstruc-
tions. According to the EHT, these four groups were a conve-
nient way to manage the analysis of the observed differences
shown by the several resulting images with the diverse pro-
cessing pipelines employed. Three of the four clusters were
intended to separate ring structures having a salient bright
spot at different sectors of the image and the fourth one
group intended to detect non-ring morphologies. The rela-
tive contribution of each cluster to the final image can be
seen in fig. 13 of Akiyama et al. (2022c); in particular, it
shows that most of the reconstruction obtained are those
having bright spots at north-west and south-west position
angle (PA). Then, the results presented exhibit some de-
pendency on the choice of parameter used by the imaging
pipelines as well as the imagine procedure itself. The ob-
servational challenges related with the imaging process of
Sagittarius A∗ and the remaining degeneracy in the final re-
sults leave several open questions. For instance, does it be-
comes appropriated to consider averages of a set of images
in order to picture features of the object under study? Since
different reconstruction methods produce different features
one could ask which of them are physically representative
of the source. A common feature that also appears in most
of the reconstructed images is a bright ring, but since the
reconstruction algorithm needed additional input, the ques-
tion still remains if the choices of parameter has been the
optimum. Some of these points have been addressed in ref-
erence Akiyama et al. (2022c) (see section 7.5) pointing that
non-ring structures are very unlikely.


The presence of an elliptical ring structure in the image
of EHT, suggests a source which is observed fairly face-on.
This has been our first assumption that we study in detail
in subsection 4.3: while in subsection 4.4 we will consider
another geometry.


Beyond the three brighter regions shown in the image; it
is somehow striking the elliptical shape, of the visible back-
ground structure, that it could suggest a matter distribution
more or less with the shape of an inclined disk. What is strik-
ing is that the angle of the semimajor axis, of this structure,
is not contained in the plane of the galaxy. Also the bright
region on the top of this image, supports this interpretation
of an inclined disk.


In any case, for these reasons we have studied the pos-
sibility that there were a thin disk with the orientation sug-
gested for this image. This is analysed in the next subsection
4.3. But also, in subsection 4.4 we study the more natural
expected situation, that the projected angular momentum
of the black holeis aligned with the angular momentum of
the galaxy.


4.3 Graphs with angular momentum aligned
perpendicularly to the elliptical shape of the EHT
image


In this subsection we show the graphs corresponding to im-
ages calculated with an angular momentum of the black hole,
whose projection coincide with the perpendicular direction
to the semi-mayor axis of the elliptical image published by
the EHT Collaboration team for Sagittarius A∗. We use
the following values of iota: ι = −0.1745, ι = −0.3490,
ι = −0.5235, ι = −0.6980, ι = −0.8725, ι = −1.0470,
ι = −1.2215, ι = −1.3960; corresponding to degrees of −10o,
−20o, −30o, −40o, −50o, −60o, −70o, −80o, of the angle of
the black hole angular momentum with the plane of the im-
age. From left to right, in each figure we show the images
corresponding to a = 0.98, a = 0.75, a = 0.50, a = 0.25 and
a = 0.00 respectively.


The comparison of images is very complicated, and it is
difficult to have a universal way to be applied to any situa-
tion. In our case, we use our understanding of the possible
astrophysical situation, but we also use a direct numerical
measure employing the correlation coefficient of the compar-
ison of the EHT image with our images. This is not an ideal
measure, but it provides a minimum information of coinci-
dence between images. In particular we will see in this set
that high values of the correlation coefficient do not neces-
sarily provide good coincidence of the images. We have en-
counter the same problematic in our previous work (Boero
& Moreschi 2021) which can be consulted for further expla-
nation.


In Fig. 10 we present the graph of the correlation coef-
ficient between the EHT image and our images.


It can be seen that the position of the lump, in our
images, with the highest intensity does not coincide with
none of the three most intense zones, seen in the elliptical
EHT image. For this reason in the next subsection we study
images where the projection of the angular momentum of
the black hole, coincides with the expected direction for the
angular momentum of the galaxy.


4.4 Graphs with angular momentum aligned with the
angular momentum of the galaxy


The rather high values of the correlation coefficient shown in
Fig. 10 is not convincing evidence for us that the synthetic
images are giving a good representation of the EHT image.
In fact, one can clearly notice that the morphology of them
are very different, and this is a quality that is not meassured
by the correlation coefficient.


From figure 11 to 20 we show the graphs correspond-
ing to images calculated with an angular momentum of the
black hole, whose projection coincide with that of the angu-
lar momentum of the galaxy. From left to right, in each fig-
ure we show the images corresponding to a = 0.00, a = 0.25,
a = 0.50, a = 0.75 and a = 0.98 respectively.


It should be notice that due to the small inclination of
the disc, simulated images require a very good control of nu-
merical errors since magnification effects becomes divergent
near the emission disc region.


For convenience we also present the table of the corre-
lations that produces the graph of Fig. 21.
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Figure 2. ι = −0.1745 = −10◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 3. ι = −0.3490 = −20◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 4. ι = −0.5235 = −30◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 5. ι = −0.6980 = −40◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 6. ι = −0.8725 = −50◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.
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Figure 7. ι = −1.0470 = −60◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 8. ι = −1.2215 = −70◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 9. ι = −1.3960 = −80◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 10. Comparison of the above graphs, with big angles, against the EHT image, through the calculation of the correlation, as


explained in the text.
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Figure 11. ι = −0.0873 = −5◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 12. ι = −0.0300 = −1.72◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 13. ι = −0.0030 = −0.172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 14. ι = −0.0003 = −0.0172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 15. ι = −10−6 = −0.00005729◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


MNRAS 000, 1–15 (0000)







10 E.F.Boero and O.M.Moreschi


Figure 16. ι = 10−6 = 0.00005729◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 17. ι = 0.0003 = 0.0172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 18. ι = 0.0030 = 0.172◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 19. ι = 0.0300 = 1.72◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.


Figure 20. ι = 0.0873 = 5◦, and from left to right with Kerr parameter: a = 0.00, a = 0.25, a = 0.50, a = 0.75 and a = 0.98.
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Figure 21. Comparison of the above graphs, with small angles, against the EHT image, through the calculation of the correlation, as
explained in the text. The ι axis has the logarithmic scale defined by ln(ιe106), where e is Euler number; so that the small angles are


magnified.


Figure 22. Superposition of best candidates with the original image. These are from left to right, the cases: a = 0.50 with ι = −0.003,


a = 0.98 with ι = −0.030 and a = 0.50 with ι = −0.030. It can be seen that the first case shows the best match of the local maximum
at the lower right of the image.


0.4969 0.4891 0.5144 0.5140 0.4946


0.5069 0.4937 0.5289 0.5256 0.5290


0.5054 0.4894 0.5646 0.4715 0.4388
0.4968 0.5131 0.4779 0.4143 0.4169


0.4816 0.4324 0.4279 0.4505 0.4395


0.4589 0.4593 0.4312 0.4460 0.4368
0.5142 0.4698 0.4438 0.3825 0.3771
0.5057 0.4889 0.4944 0.4375 0.4194
0.4919 0.4896 0.5156 0.5130 0.5003
0.4590 0.4376 0.4818 0.4915 0.4743


Table 1. Table of values of the correlation for small angles, as


shown in Fig. 21.


4.5 End point of null geodesics in Kerr-Schild coordinates


We have presented two sets of simulated images using as a
physical model that of a thin disk with different equatorial
inclinations with respect to the line of sight, and also for
various values of the angular momentum parameter a. For
reasons that are being discussed, we take as our best model,


the one characterized by the values a = 0.5 and ι = −0.003.
But the question we would like to tackle now, is, where do
all these ray tracing calculation reach, in the vicinity of the
black hole? The question is relevant to understand the na-
ture of the image one is generating. The first thing to clar-
ify is the choice of a coordinate system to use, in order to
make graphs that have some geometrical meaning that is
not corrupted by a bad behavior of the coordinate system;
as is known to happen with the Boyer-Lindquist coordinates
in the vicinity of the event horizon. Our choice is the Kerr-
Schild coordinate system, that is naturally defined when one
makes the corresponding decomposition of the Kerr metric,
in the so called Kerr-Schild form. In this way we have at our
disposal a set of coordinates (t, x, y, z) that we use for these
graphs.


In the graphs of Fig. 23 we present the end points of the
integration in three different planes. In the top-left graph, it
is impressive to see that those trajectories that reach the
disk, are almost aligned along the line in the equatorial
plane, that is opposite to the line of sight. That is, one has
to have in mind the the observer in these coordinates is lo-
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Figure 23. The Kerr-Schild coordinates are adapted to the geometry of the black hole, so that the equatorial plane is z = 0, and the
angular momentum of the black hole points in the direction of the positive z’s. The top-left graph, using (x, y) coordinates, shows the
end points of the ray-tracing to the past, for all values of z; where positive y means the zone away from the observer, that is, in the


opposite side of the black hole. The top-right graph, using (x, z) coordinates, shows the end points of the null geodesics to the past, for
all values of y, the bottom graph, using (y, z) coordinates, shows the end points of the ray-tracing to the past, in this plane for all values


of x.


cated somewhere far away with big values of the negative y
coordinate. In other words, with these geometrical settings,
the observer only sees a very small portion of the disk which
is just opposite to the line of sight; since for this small angle,
the front part is almost invisible; in fact, non of our geodesics
reach any other region of the disk. This is in spite of the
fact that we have made the calculation for 1008 geodesics
in the plane of the expected image. The upper part of this
graph, shows an umbrella type shape, which just shows our


choice for the end condition, for those geodesic that have not
reached the disk. In the bottom part of the same graph, one
can see an sphere like object, which is just the condition that
the geodesics have reached the event horizon. For this rather
low angular momentum, one can only see a peculiar spread
of the end points; where in the whole graph, crosses indicates
geodesics that start above the equatorial plane and circles
denote geodesics that start below the equatorial plane. The
fact that the spread in the disk is so small, also indicates the
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degree of precision of our calculations. In particular we have
been using quadruple precision with 2.4 × 10−22 tolerance
for the Runge-Kutta integrator.


In the top-right graph, showing the (x, z) values, one
can see the umbrella type shape, from another angle. A big
number of end points, at the opposite side of the black hole,
are difficult to see in this graph, since they are confused with
the end points of null geodesics that reach the event horizon,
and form the sphere like shape object, more or less in the
center of this graph.


Finally in the bottom graph of Fig. 23, one can see the
same distribution from a different angle; in this case the
(x, z) coordinates. Since the equatorial plane coincides with
z = 0, one can see that the condition for the null geodesics
to reach the disk is satisfied with very high precision; which
are all those points outside the event horizon with z = 0.
The umbrella type shape is now shown to the right of this
graph.


4.6 The possible bar structure on the disk


In our previous article on the construction of synthetic im-
ages of M87(Boero & Moreschi 2021), we recurred to a bar
structure on the disk in order to build images that resemble
in a better way the corresponding EHT image of the su-
permassive black hole. For this reason, we have also study
for this case of Sgr A∗, the consequences of introducing
this type of structure. The results did not help in provid-
ing better images, that where closer to the aspects found in
the EHT image of Sgr A∗. And the reason for this, can be
understood in terms of the graphs of Fig. 23, discussed pre-
viously. That is, since for this geometric configuration, the
only observed part of the disk lies on a narrow sector, on the
disk, at the opposite region of the line of sight; the introduc-
tion of a bar structure with higher temperature, can only be
seen if it is placed on this narrow region. And therefore its
effect is to slightly change the original image, without bar
structure. Consequently we have not included those graphs
in this article, since they do not contribute to the search for
the explanation of the other structure shown in the EHT
image of Fig. 1.


4.7 Numerical comparison of the images


The main part of the construction process of the images, is
the analysis of the general aspects of EHT image. Guided
by the suggested geometry of Fig. 1, we have made a couple
of configuration for our disk model, in order to try to con-
struct images that resemble that of the EHT team. But it
is convenient to also have at hand some numerical measure
for the comparison of our images with that of EHT. For this
reason, as we did in our previous work, we have also con-
sidered the correlation between two images. This is a very
limited type of measure, that does not include information
on the structure of each image; but in any case it is a very
natural type of measure.


The comparison of our first configuration, with big an-
gles between the equatorial plane of the disk and the plane
of the galaxy are shown graphically in Fig. 10. While, the
comparison of our second configuration, with small angles
between the equatorial plane of the disk and the plane of


the galaxy are shown graphically in Fig. 21. The correspond-
ing table for this last graph is presented in table 4.4; where
one can see that our chosen configuration of a = 0.5 and
ι = −0.003, has the highest value.


5 PHOTON REGIONS AND SILHOUETTE OF THE
BLACK HOLE


In a spherically symmetric spacetime it is natural to study
the null geodesics that have constant radial coordinate; and
so define the corresponding photon region. Surprisingly, in
Kerr spacetime, the analog question also has meaning. It
should be noticed that since the spacetime is not spherically
symmetric, it is not trivial to ask whether there exists a
natural radial coordinate; but Kerr’s radial coordinateKerr
(1963) r seems to be the answer. In fact, there exist null
geodesics with r =constant, and they have been called also
the generators of the ’photon regions’. However only recently
there have been claimsCederbaum & Jahns (2019) that this
set contains the only trajectories of photons that do not go
cross the horizon or escape to infinity. In relation to all this,
it is probably worthwhile to point out that the radial and
angular coordinates (r, θ) used in the Boyer-LindquistBoyer
& Lindquist (1967) form of the metric, coincide with the
original (r, θ) presented in Kerr’s article.


Although the photon regions have been studied in sev-
eral works, we are only concerned here with the silhouette
that an observer would see of a black hole with angular mo-
mentum, if seen with a lighted background.


Then, we are concerned with the null geodesics that
satisfy r = rp, and so, ṙ = 0 and r̈ = 0; or equivalently,
R = 0 and dR


dr
= 0, which can be expressed as:


0 =
(
E
(
r2p + a2


)
− aL


)2
−K∆(rp), , (83)


and


0 = 2Erp
(
E
(
r2p + a2


)
− aL


)
−K(rp −m). (84)


From these one obtains


∆(rp)


(rp −m)
=


(
E
(
r2p + a2


)
− aL


)
2Erp


; (85)


where we have divided the above equations. Note that E is
of order one and negative, while |aL| << |Er2p|; implying


that the
(
E
(
r2p + a2


)
− aL


)
is negative, so that (85) has


the correct sign. Then, one has


L =
1


a


(
E
(
r2p + a2


)
− 2Erp∆(rp)


(rp −m)


)
; (86)


and


K =
(2Erp)


2∆(rp)


(rp −m)2
. (87)


One also must satisfy


K −
(


L


sin(θp)
− aE sin(θp)


)2


> 0. (88)


Then, (86) gives L(rp), while (87) gives K(rp). To ob-
tain the silhouette one must consider those geodesics that
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touch the outer boundary of this regions, which is charac-
terized by the condition that θ̇p = 0 or equivalently


K(rp)−
(
L(rp)


sin(θp)
− aE sin(θp)


)2


= 0. (89)


This allows to express rp(θp), since one has


(2Erp sin(θp))
2∆(rp)


(rp −m)2
=
(
L(rp)− aE sin(θp)


2)2 , (90)


or


∆(rp)
(2Erp sin(θp))


2


(rp −m)2
=(


1


a


(
E
(
r2p + a2


)
− 2Erp∆(rp)


(rp −m)


)
− aE sin(θp)


2


)2


,


(91)


so that


∆(rp)
(2arp sin(θp))


2


(rp −m)2
=(


r2p + a2 − 2rp∆(rp)


(rp −m)
− a2 sin(θp)


2


)2


=(
r2p + a2 cos(θp)


2 − 2rp∆(rp)


(rp −m)


)2


.


(92)


Taking the square root one would have a ± relation, but we
can build this in the definition of ϑp with a range of [−π, π];
so that we can write√


∆(rp)2arp sin(ϑp) =


(rp −m)
(
r2p + a2 cos(ϑp)


2)− 2rp∆(rp);
(93)


which provides for us rp(ϑp). Defining f(rp) as


f(rp) =(rp −m)
(
r2p + a2 cos(ϑp)


2)− 2rp∆(rp)


−
√


∆(rp)2arp sin(ϑp);
(94)


one could solve for rp using the standard techniques of root
finding.


Then we obtain L(ϑp) and K(ϑp); from which we draw
the silhouette using celestial coordinates.


Note that when a = 0 one has


f(rp) =(rp −m)r2p − 2rp∆(rp)


=r3p −mr2p − 2rp(r
2
p − 2mrp)


=− r3p + 3mr2p;


(95)


so that rp = 3m in this case.


6 FINAL COMMENTS


As commented previously, the EHT collaboration has used
as guiding idea, the structure of rings for the construction
of their images. The question of whether Sgr A∗ is ap-
propriately described by a ring, is so central to the EHT
work(Akiyama et al. 2022c) that they dedicate a subsec-
tion to this point. They affirm there that: “there are a small
number of non-ring images that fit the data well and cannot
easily be excluded through additional tests.”


In our work we have applied as guiding idea the struc-
ture of a disk, which was very successful in the construction
of images for the M87 system. Since they also consider the


with of the rings, one may wonder whether there could be
some kind of intersection between the two main ideas of
the models. We can point out, that since the main starting
physical model are rather different, also the language is dif-
ferent; but it should be remarked that they concentrate on
rings that are mostly face-on, in contrast to our assumption
of inclined thin accretion disks, that are mostly edge-on.


The main EHT image shown in Fig. 1 shows a basic
structure of three local intensity maxima located approxi-
mately at position angles of: (A: 70◦), (B: 220◦) and (C:
330◦); on a disk like shape. Interpreting this configuration
as a possible disk, which was inclined to the observer, and
assuming that structure C indicated the opposite side of the
disk, we first carried out a series of images, for the iota angle
in the range ι ∈ [−10◦,−80◦], and with the angular param-
eter a with values a = [0, 0.25, 0.50, 0.75, 0.98]. We conclude
that the images so constructed do not represent consistently
the EHT image of Sgr A∗. For this reason we next per-
formed calculation of images that assume the more natural
configuration of a disk, with small angle variations with re-
spect of the plane of the galaxy. In all cases we have assumed
the disk is located in the equatorial plane of the black hole,
and therefore, its angular momentum is perpendicular to the
disk. With this second set of images, we find that one can
explain the structure B of the EHT image. The model we
have used does not account for the other structures A and
C of the EHT image.


It should be remembered that the final EHT image is
the average of four different images that they show in their
Figure 13 graphs. However it is noticed that only structure
B is persistent in the four basic images; probably indicating
that it is a stable physical structure observed by the EHT
team.


This fact is reinforced if we take a look at the first row in
Figure 27 of the EHT article Akiyama et al. (2022d) which
we reproduce here in Fig. 25. The important graphs, that
we reproduce in Fig. 25 are the first and the third; where
they show the images that are obtained from the Themes
image algorithm. In their paper III, in which they present the
preferred image of Sgr A∗, they have chosen to use the data
of April 7. However, it is noticeable that the Themes image
from April 6, shows a prominent local intensity maximum
more or less at the position of the local intensity maximum
or our preferred image shown in Fig. 24. This gives support
to our conjecture that structure B corresponds to an intrinsic
persistent structure of Sgr A∗.


As it has been mentioned in the EHT articles, the ac-
quisition of the data and its processing is a very difficult task
that forces the team to use models, with different weights,
in the reconstruction of images. We hope our work can con-
tribute to the adjustments of pipelines that are used in those
reconstructions processes; since different priors produce var-
ious outcomes.


Data Availability


No new data were generated or analysed in support of this
research. The numerical calculation is completely described
in the article.
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Figure 24. Image of the flux with all magnifications for Sagittarius A∗ in the case of a = 0.50 and ι = −0.003; where the grey line shows


the silhouette for the case of a back illumination of the supermassive black hole.


Figure 25. Reproduction of two graphs first row of Figure 27 of paper IV of the EHT work on Sgr A∗; they correspond to April 6 and


April 6+7 of the Themis pipeline. The third graph on the right is the copy of our image at the scale of the other EHT images.
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Abstract


We present a new measure that can be used for the detection of an unknown gravitational wave
signals in two detectors, without recurring to a priori templates or whitening of the strains.


For an evaluation of its properties we apply our measure to the LIGO data of the GW150914
event and detect the existence of a similar signal with 99.99% con�dence level. We also use the
new measure to study the strains in the gravitational wave observatories for the events 151012_2,
GW151012, GW170104 and GW190521.


We compare our measure with other standard measures and �nd that it is stronger for the
studied data. Thus we are presenting a new powerful tool for the systematic study of unknown
gravitational wave signals in two or more observatories.
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1 Introduction


As the interferometric gravitational-wave observatories increase their sensitivity, the number of de-
tections also increase. In particular, in the O3a run of the Advanced LIGO and Advanced Virgo
they were able to increase the number of con�dent gravitational wave detections (GWTC-2)[1]
more than threefold over the �rst transient catalog GWTC-1[2]. In the presentation of the catalog
GWTC-2[1] the authors communicate that they have used two methods to identify candidates;
one that searches for minimally modeled sources and other that searches for signals from a bank
of template wave forms[1]. They have also mentioned that they have used the Coherent Wave-
Burst (cWB) algorithm based on the maximum-likelihood-ratio applied to power excesses in the
time-frequency domain[3]. More recently the LIGO/Virgo Collaboration has presented the catalog
GWTC-3[4]; where they also use the same type of detection techniques.


Every detection of a gravitational wave event captures the attention of a large part of the
community which is very interested in the details of the detected signals. For this reason we have
been studying the characteristics of the these signals; in order to be able to relate them with
corresponding theoretical frameworks. In this process, we have �rst developed a non-destructive
pre-processing �ltering technique; that had allowed us to discover more relevant physical signal for
the GW150914 event. Afterwards we have started the study of techniques for the comparison of
unknown similar signals in the strains of two detectors, and in the process we have constructed an
optimized measure that could be used, in post-detection detailed studies, that can even provide
more information of the detection process itself. This article is devoted to the presentation of such
measure.


When employing templates, most pipelines identify the gravitational-wave signals by matched
�ltering[5, 6, 7, 8] data; using a bank of �lter waveforms with a range of source parameters. Although
normally the search is carried out with an assessment in the mass range and the assumption of
quasicircular orbits[4]. However, with the increase in sensitivity of the observatories, there appear
detections of systems that seem outside of the expected range of parameters. For example, the event
GW190521 has been reported to have a remnant of 150M�[9]; which is an unusual high mass. In
reference [10] the LIGO/Virgo Collaboration have presented the properties of this system `under the
assumption of a quasi-circular BBH coalescence'. But it has also been suggested[11] that probably
this system corresponds to the capture of two non-spinning black holes on hyperbolic orbits. In
other words, some simplifying assumptions seem not tenable. Thus, it would be advantageous to
have a method of detection that does not depend on assessments and assumptions on the details
of the astrophysical system. Our proposed method below is constructed with these ideas in mind.


In the cWB algorithm[3] the detected time series is �rst treated with a Wilson-Daubechies-
Meyer transform and is �ltered by a whitening process. These time-frequencies series are then
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combined from those coming from all detectors, by their sum of squares; which are maximized for
all possible time-of-�ight delays in the network. Dealing with time-frequencies series implies that
one has to deal with two dimensional arrays, with the consequent demand on computer memory.


Our method, only deals with the time series, and does not use any whitening techniques. Instead
we use here the pre-processing method based on FIR �lters that have excellent behavior with the
phase of the strain, that avoids the attenuation of astrophysical signal, and therefore allows to
see `more' relevant information of the gravitational detected wave; for this reason we call this the
pre-processing More19 method, which was described in [12]. In particular by using this method,
we discovered in reference [12] that the signal of a gravitational wave has a duration 0.5s; while in
their publication[13] the LIGO/Virgo team could only show a signal of a about 0.1s duration.


In spite of the drawbacks of the whitening techniques, associated to huge deformation of the
signal and the statistics, those methods have been used in a successful and e�cient manner for
the detection of transient gravitational waves[14]. The measure we present in this article has been
developed as a useful tool in post-detection studies; although, as we will see in this article, it could
probably be adjusted to be used in the detection process itself.


We here suggest to carry out the comparison process of similar gravitational-wave signals in two
detectors using an optimized measure(OM) that we present below; which is independent of model
assumptions, and templates and does not use whitening techniques. We denote the new measure
OM with the symbol Λ, which it will be shown to be somehow related to the likelihood ratio[15]
calculation for the detection of a known signal in a single detector. Before applying this measure
we subject the strains to the pre-processing More19, mentioned above.


While the measure is designed for a pair of detectors; in the case of a network of detectors
with three or more of them, one can either apply the measure for each pair independently, or
assuming the statistical independence of the measuring process for each detector, one can consider
the multiplication of the measures of all pairs


The organization of this article is as follows. In section 2 we present a new measure to compare
the content of signals in the strains of two detectors; where for the sake of simplicity of the presen-
tation we relegate to an appendix some arguments in favor of our choice. Also, we include a short
description of the correlation coe�cient in another appendix. In section 3 , to test its properties, we
apply this new measure to the case of the GW150914 event, and present the analysis that conduces
us to the detection of similar signals in the two LIGO strains recorded for this event. We carryout
some detailed studies of the new measure with this well known event, that has a very strong signal.
To test the behavior of the measure OM under di�erent circumstances, we compare the signals
in the events 151012_2, GW151012, GW170104 and GW190521 in sections 4 - 7. In particular
GW190521 involves three strains, since the Virgo detector was online at that time. In section 8 we
include some �nal comparisons and comments on this work.


2 New measure for the comparison of signals in


two detectors


2.1 Preliminaries on measures


In the literature one can �nd many approaches for the study of data that intends to determine
whether a known signal is present in the data; however works considering to determine whether
an unknown signal is present in two separate and independent sets of data are rare. In order to
build the needed new measure, we have been guided by the usual method of maximum likelihood as
much as we could; since: �Although the maximum likelihood principle is not based on any clearly
de�ned optimum considerations, it has been very successful in leading to satisfactory procedures in
many speci�c problems.�[16] The choice of a maximum likelihood method is also based on the fact
that we are dealing with a non-parametric detection[15]. Due to the fact that from our proposed
measure Λ, we will deduce important results, we will go through a detailed presentation of it; but to
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avoid distraction of the main content of this article, we present in appendix A a line of arguments
that support our choice for the new measure Λ. These arguments are based on trying to adapt
the likelihood method, of searching for one signal in one data, to our case. However we have to
moderate the �rst natural de�nition of likelihood so that the measure becomes useful.


The arguments presented in appendix A, are not intended to be a deduction. They are only
presented to connect our de�nition of the measure Λ with other related constructions that have
been used in related works. That is, there is no right or wrong de�nition of a measure, any de�nition
of a measure is arbitrary and so is ours; the question is if it is useful for some purpose. We claim
that our de�nition is useful since it is the most powerful[16] when compared with two other natural
choices and it has allowed us to observe the gravitational wave in the LIGO data of the GW150914
event, with unprecedented level of signi�cance, that we present below.


To give perspective to the strengths of our measure Λ, we here, in section 2.2, present our
calculation of the likelihood ratio L to test the hypothesis that a similar signal is recorded in the
strains of two detectors, versus the hypothesis that no similar signal has been recorded in both
detectors; we present our measure Λ in section 2.3 and we also recall the correlation coe�cient ρ
between the two strains in section 2.4. Then, in section 3 we discuss the application of these three
measures to the case of the data of the GW150914 event.


2.2 The likelihood ratio for the detection of an unknown signal in


two detectors


In appendix A.2 we have deduced the expression for the likelihood ratio to test the hypothesis that
a similar signal is recorded in the strains of two detectors, versus the hypothesis that no signal has
been recorded in both detectors, which, in terms of the data, is given by:


L(v1,v2) = exp


[
m− 1


2


( 1∑m
k=1 v


2
(1)k


+
1∑m


k=1 v
2
(2)k


) n∑
k=1


v(1)k v(2)k


]
; (1)


where the width of the window to calculate sample variances, that is m, is chosen appropriately
depending on the nature of the observations, and we are assuming that the means are zero.


This estimation of the desired measure have some di�culties. The factor
(


1
N01


+ 1
N02


)
(See


appendix A.2 for details.) is rather huge, when using LIGO data, and it does not contribute to
strengthen the comparison of the data. Expression (1) is the theoretical deduction of the likelihood
ratio, but for actual numerical application to the gravitational-wave data, we will use (7); for reasons
that we explain below. Huge exponents are undesirable since might lead to unwanted numerical
error or even over�ow errors. For these reasons, we present our measure Λ next.


2.3 The measure Λ


Due to the di�culties found in using the likelihood ratio, just presented, we constructed a new
measure OM that turns out to be useful for our purposes. Our arguments, that led us to this
construction, are presented in appendix A.


We here present the measure in synthetic form.


When dealing with data from gravitational-wave observatories, one is confronted with time
series, which are supposed to contain signals from gravitational waves; that might last, from a
fraction of a second to several seconds; depending on: the astrophysical nature of the source, the
intensity, the noise state of the detectors at the time of recording, etc. Then, in designing tools for
the analysis of the data, and considering the transitory nature of the expected gravitational-wave
signals, it is convenient to introduce windowing techniques that allow for the study of portions of
the data. For this reason we introduce an inner product that contemplates this point.
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We de�ne an inner product for two strains x(τ) and y(τ). The inner product is calculated
through the convolution with an appropriate window w(t− τ), and is de�ned by:


< x,y > (tj) =
∑
k


x(tk) y(tk)w(tj − tk); (2)


where we use the fact that the data is obtained at discrete time intervals. For the continuum
notation below we will use t instead of tj .


For the speci�c case of the observation of gravitational waves at two detectors, let v1(τ) repre-
sents the strain at one detector with respect to its proper time, and v2(τ − δ) represents the strain
at the other detector, with time shift δ.


Then, we de�ne the time dependent Λ measure from


Λ(v1,v2, δ, t) = exp


[
1


σ∗12


< v1,v2 >


< (v1 − v2), (v1 − v2) >


]
; (3)


where σ∗12 is the standard deviation of <v1,v2>
<(v1−v2),(v1−v2)> . As already mentioned, in appendix A we


present arguments that support this choice for the measure.
In short, this measure can be understood as coming from an adaptation of the likelihood method


to our case, with contrast accentuation and overall moderation. Our choice gives reasonable results
with actual LIGO data.


Although the arguments presented in appendix A use the idea of having the same signal in two
strains, the measure Λ also indicates the existence of similar signals in two strains; namely, when
the signals s1 and s2 recorded in the detectors satisfy s2 = s1 + ε, with max |ε| � max |s1|. This
is precisely what happens when we apply the measure OM to the data of the GW150914 event; as
shown below.


For the window w we use a Tukey window, from the scipy signal python library, with width
that is chosen for each event, and parameter alpha = 1/8; which has excellent behavior. The
convolution is performed with the e�cient �tconvolve function from the same library.


It is probably worthwhile to mention here that during the �rst times of gravitational-wave obser-
vations, only the Hanford and Livingston detectors were on line; and that due to their orientation,
for all practical purposes, the strain of one of them was often compared with minus the strain in
the other; as it was the case in the event we are considering here GW150914. However, it is not
true that the recorded signals satisfy that one is minus the other, since we know that actually due
to a non-exactly opposite alignment of the detectors, they should record two di�erent projections
of the spin 2 gravitational wave. When considering other detectors in the network, as for example
Virgo or Kagra; this e�ect becomes more noticeable. But in all cases one would be confronted with
the situation that any two of the detectors in the network, would record, let us say for a binary
collapse, few oscillations of comparable magnitude and frequencies. Our measure would report on
these type of coincidences; that is, even if the morphology of the rest of the gravitational wave have
di�erent phase behavior; as expected when recording a spin 2 gravitational wave with detectors
having di�erent orientations.


2.4 The correlation coe�cient


One could have thought that the natural thing to do was just to consider the correlation coe�cient[17,
18, 19, 16] between the two strains, with a time shift added to one of them. Then, taking into con-
sideration the characteristics of the gravitational-wave observation, mentioned above, we de�ne the
correlation coe�cient in terms of the natural inner product by:


ρv1,v2 ≡
< v1,v2 >√


< v1,v1 >< v2,v2 >
. (4)


The fact is that the correlation coe�cient gives very low response; as we show in appendix B and
in discussions below in section 3 and 8.
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2.5 Minimal test for Gaussianity behavior


In the preceding subsection we have presented a new measure to compare similar signals in two
detectors. The motivating arguments are presented in the appendix A which make use of the
assumption that the noise at both detectors are close to a Gaussian behavior. Just by observing
the amplitude spectral density of the strains at Hanford and Livingston, one can see that the data is
no perfectly Gaussian. However, there are many ways in which this assumption can be tested, and
several articles in the past have addressed this point; but we here instead present graphs of what can
be considered the most direct minimal test for Gaussianity behavior, namely the histogram of the
data of the GW150914 event. We must emphasize that the behavior shown in the graphs of �gures


Figure 1: Comparison of the histogram of Livingston data(green) with a Gaussian(red). On
the left the complete histogram of 256 seconds of the data, centered at the time of the event.
On the right the detail of the graph in the central region.


Figure 2: Comparison of the histogram of Hanford data(colored surface) with a Gaussian(red
curve). On the left the complete histogram of 256 seconds of the data, centered at the time of
the event. On the right the detail of the graph in the central region.


1 and 2 , are obtained after we have applied the pre-processing �ltering techniques More19 that we
have described in [12]. Figure 1 shows the histograms for the Livingston data of 256 seconds centered
at the time of the event, and compared with a Gaussian with σL = 4.92212e− 22. Figure 2 shows
the histograms for the Hanford data of 256 seconds centered at the time of the event, and compared
with a Gaussian with σH = 4.83976e−22. The standard deviations σL and σH were calculated from


the data. For completeness, the Gaussian function is given by: G(x, σ, µ) = 1√
2πσ


exp
(
− (x−µ)2


2σ2


)
.


For both detectors the median was essentially zero.
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In order to give perspective to the relevance that has this Gaussian behavior as a result of our
More19 �ltering approach, we show here what is the result on the time series after applying the
whitening �ltering procedure used by the LIGO/Virgo Collaborations. The histograms of the time
series of 256 seconds centered at the time of the event, after applying the whitening �lters to the
Livingston and Hanford strains of the GW150914 event, are shown in the graphs of Fig. 3 and 4 .


Figure 3: Comparison of the histogram of the Livingston time series after applying the
whitening procedure as describe by LIGO tutorials. We use the same graphic scripts as above.
On the right the detail of the graph in the central region. The fact that the maximum appears
a little to the right, on the detailed graphs, is an artifact of the graphic script based on the
notions of bins.


Figure 4: Comparison of the histogram of the Hanford time series after applying the whitening
procedure as describe by LIGO tutorials. We use the same graphic scripts as above. On the
right the detail of the graph in the central region. The fact that the maximum appears a little
to the right, on the detailed graphs, is an artifact of the graphic script based on the notions of
bins.


It can be seen in the graphs of Figs. 3 and 4 that the whitening procedure changes completely
the statistics of the time series, since now the histograms show a huge departure from a Gaussian
behavior. One might ask, what is the reason for this extreme behavior. This can be inferred from
the time domain graphs of the strains after whitened and band-pass �lters. In Fig. 5 we show
the complete 256 seconds strain after whitening and band-pass �lters are applied, following LIGO
procedures. It can be seen that there are important boundary e�ects. For this reason we trimmed
the strain, by cutting o� 3s on each extreme, to obtain a total length of 250s strains. In Fig. 6 we
show the remaining 250 seconds strains after whitening, band-pass �lters and trimming are applied.
It can be seen that now the strain is very quiet with an important spike near the time of the event.
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Figure 5: Time domain graph of the whitened and band-pass strains of the complete 256sec-
onds data.


Figure 6: Time domain graph of the whitened, band-pass and trimmed strains of the remaining
250seconds strain.


The corresponding histograms after the trimming are shown in the graphs of Fig.7 ; where now
one can see a Gaussian behavior for the remaining whitened noise.


Figure 7: Histograms of the strains after applying whitening and band-pass �lters, and after
trimming the extremes in order to avoid boundary e�ects.
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This Gaussian behavior for the remaining noise makes one wonder whether our measure Λ would
give good results when applied to this whitened strains; which we will study in the next section.


3 Detection of similar signals in the two LIGO


observatories for the GW150914 event


3.1 Study of the measure Λ as a function of time


In order to see how this new measure behaves with real data, we apply it to the event GW150914
as a test bed to study its properties.


We show in �gure 8 the graph of our measure Λ as a function of time, for the Livingston
strain(L) against the nominal Hanford(H) strain shift of δ = −0.007s, in the interval -10s, 10s from
the time of the event te; for a Tukey window of 0.5s width, where it can be seen that there is a
sharp peak at about 0.0s, that is at the time te; where we have advanced the time axis by the width
of the window. The sign of the H strain is obviously chosen so that the natural inner product with
the L strain gives a positive result when comparing. The actual statistic is calculated in the lapse
of time ±11s around the event time, which at this moment is a preliminary arbitrary choice and
will be studied further in the next subsection.


Figure 8: The measure Λ(t) for the shift δ = −0.007s for the Hanford (-)strain, in the range
±10s, with respect to the Livingston strain.


Figure 8 shows that close to the time of the event there is a sharp peak, indicating that most
probably both detectors have recorded a similar signal in the window w before this time.


The sharp behavior of this measure invites us to calculate a coarse estimate of the level of
signi�cance by using directly Chebyshev inequality[19], that we recall next:


Theorem 3.1 Let X be a random variable and let λ(x) be a non-negative function. Then, for any


r > 0,


P (λ(X) ≥ r) ≤ E(λ(X))


r
. (5)


Here P means probability and E expectation value.
The �rst estimate of the level of signi�cance α0 can be calculated from identifying λ = Λ and


taking r = max(Λ) = 58.21. Then, from the numerical calculation E(Λ) = 2.338, we obtain
α0 = 0.0402.
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With the knowledge of the standard deviation, we can use the customary form of the Chebyshev
inequality that sets:


P (|X − µ| ≥ tσX) ≤ 1


t2
; (6)


where µ = E(X) and σX is the standard deviation. Then, by identifying X with Λ, and using the
calculated value of σΛ = 4.4406, we obtain the second estimate of the level of signi�cance α1 given
by α1 = 0.0063. It can be seen that this second estimate improves on the �rst one; since we are
using more information on the statistics of Λ.


The Chebyshev inequality is normally applied when the probability distribution for the situation
under study is not known. Let us try to infer more information on the statistical properties of Λ.


Figure 9: Histogram of Λ measure for a limited part of its domain.


In �gure 9 , in order to show some detail, we present the graph of the histogram of our measure
for a limited part of its domain, that does not include the maximum value, close to sixty. The
sample corresponds to a strain of 22 seconds centered at the time of the event. It can be seen,
since the distribution only involves positive values, that the histogram does not show a Gaussian
behavior. Instead it does resemble a log-normal behavior.


This, in turn invites us to see what is the behavior of the histogram of the exponent, that we
show next.


Figure 10: Histogram of logarithm of Λ measure. It is also shown with verticals lines the
median, 1, 2, 3 and 4 sigmas, and with a black vertical line, the position of the maximum
observed.


10







In �gure 10 we show the graph of the histogram of the logarithm of our measure for the 22s of
the strains; where sigma is the standard deviation. The Gaussian curve is calculated from the mean
and the standard deviation. It can be observed that the Gaussian red curve is a good smoothed
approximation of the behavior of the histogram. The black vertical line shows the position of the
maximum of the logarithm of the measure, observed at zσ, with z = 3.70749.


Identifying a Gaussian behavior for the logarithm of Λ, we can assign the level of signi�cance[16]
α = (1/2)[erfc(z/


√
(2))]; where erfc is the complementary error function. Equivalently we can


also de�ne the con�dence level γ = (1 − α). The values so obtained are: a level of signi�cance
α = 0.000105, and a con�dence level, or con�dence coe�cient[18], γ = 0.99989.


This is a remarkable strong behavior of the measure OM; since for the data we are analyzing
it gives us 99.99% con�dence that there are similar signals in both detector strains, for the chosen
window. We will see next that this measure is stronger than the other two we are considering in
this article.


Let us note that the LIGO/Virgo Collaborations[20] use for this event a measure based on a
matched-�lter signal-to-noise ratio, which employs templates, and can not be compared directly
with our method.


3.2 Adjustment of the lapse of time to be used


Since the measure OM works without a priori assumed templates, but just comparing the two strains
of the distinct gravitational wave detectors, it is subject to the possibility of �nding strong random
noise of seismic origin with similar frequencies and phases. For this reason, one is interested in
maintaining the lapse of time, for the strain comparison to a minimum, so as to avoid the previous
inconvenience and obtain a reasonable statistic behavior. Because of this, we �rst carry out a
preliminary study on the behavior of the measure OM in order to estimate a reasonable working
lapse of time.


In [13] the authors present an study designed to operate without a speci�c waveform model, for
signal frequencies up to 1 kHz and durations up to a few seconds. In reference [21] the LIGO/Virgo
Collaboration analyzed coherently 8s of data with a uniform prior. In the article [22] the same
Collaboration studied correlations on the order of the duration of transient astrophysical signals; a
fraction of a millisecond to a few seconds; and they also added: �noise transients with a large amount
of broadband power can corrupt the analyzed data up to the duration of the strain-equivalent noise
PSD estimate, ±8s from the time of the noise transient.�; which corroborates our view above.


Taking the range of lapse of times used by LIGO/Virgo team, we next study the range for lapse
of times: [8, 16, 24, 32, 40, 48, 56, 64] seconds. In Fig.11 we show the graph that studies the
behavior of the level of signi�cance α with the length of the lapse of time.


Figure 11: Graph of the level of signi�cance as a function of the length of the lapse of time
considered.
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It can be seen from Fig.11 that the signi�cance for this event, shows an starting decreasing
tendency, up to a width of about 40 seconds, when it gets into a stationary phase. This suggests
that we should consider the lapse of time of 40s for our studies.


Figure 12: Graph of the measure and histogram of ln(Λ) for the 40s lapse of time.


In Fig.12 we show the graphs of Λ and of the histogram of ln(Λ) for the 40s lapse of time. Let
us note that all the histograms are calculated with 1000 bins; so that, as in this case, the amount
of data might not be su�cient to produce a smoothed graph. In order to quantify how close the
histogram is to a Gaussian behavior, we have also included the curve of the appropriate average,
that was calculated with a Kaiser window. One can see that the Gaussian curve, shown in red, is
fairly close to the average of the histogram, shown in blue. We have also estimated the relative
average error between these two curves; which in this case gives 0.088, that is, just few percents.


With the chosen length for the lapse of time, we now have z = 3.94165 and therefore signi�cance
of α = 4.05e-05 and con�dence coe�cient γ = 0.9999595; which improves by a factor of 2.6 on our
previous estimate using the ±11s interval.


3.3 Applying the optimal measure to the whitened strain


Since we have seen that the noise of the whitened strain also shows a Gaussian behavior; it is natural
to consider then the action of the measure OM to the whitened strain. We have also considered
the same range for lapse of times and we show the histogram of ln(Λ) for three cases in Fig.13.


Figure 13: Graph of the histogram of ln(Λ) for whitened strains.


It can be seen from the graphs in Fig.13 that when we apply the measure OM to the whitened
strains, we can not sustain a behavior that is close to Gaussian. In particular we can see that the
relative error for a 8s width is 0.938, for a 40s width the relative error is 0.483s while for the 64s
width the relative error is 0.339. In all these cases this quantitative estimation of the relative error
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is too high to allow us to consider the behavior of the measure OM on the whitened strains to be
close to Gaussian. For this reason we do not consider our measure on whitened data any further.


Of course one could still use the language of `signal to noise' ratios, applied to our measure on
whitened strains; but on one hand we do not want to compete with LIGO techniques, and on the
other hand we are trying to stay close to standard statistical treatments based on the concept of
probability.


3.4 Study of the other measures as a function of time


For the numerical calculation of the likelihood ration L, we make use of the natural inner product
de�ned above, so that the detailed expression of L to be used with gravitational-wave data is:


L(v1,v2) = exp


[
1


2


( 1


< v1,v1 >
+


1


< v2,v2 >


)
< v1,v2 >


]
. (7)


When we try to use the likelihood ration L, that we calculated above, to the data of the GW150914
event, we obtain an over�ow error using python. From the previous discussion, it is suggested to
also study the behavior of the logarithm of L. In �gure 14 we shown the histogram of the logarithm
of the likelihood ratio, along with the position of its median, sigmas, and the maximum of the
logarithm of L with vertical lines and the theoretical Gaussian calculated from the median and the
standard deviation. The maximum of the logarithm of L is located at zLσL, with zL = 2.85729
(Shown in �gure 23.). Identifying a Gaussian behavior for the logarithm of L, we can assign the
level of signi�cance αL = 0.00213. This means that this measure gives a signal about 53 times
weaker than our optimized measure.


Figure 14: Histogram of the logarithm of likelihood ratio L. It is also shown with verticals
lines the median, 1, 2, 3 and 4 sigmas, and with a black vertical line, the position of the
maximum observed.


The behavior of the correlation coe�cient is studied in appendix B ; instead, here in �gure 15
we shown the histogram of the correlation coe�cient, with the position of its median, sigmas, and
the maximum of ρ with vertical lines and the theoretical Gaussian calculated from the median and
the standard deviation. The maximum of ρ is located at zρσρ, with zρ = 2.85978. Identifying a
Gaussian behavior for ρ, we can assign the level of signi�cance αρ = 0.00212. This means that the
correlation measure gives a signal about 52 times weaker than our measure.
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Figure 15: Histogram of the logarithm of the correlation coe�cient measure ρ. It is also
shown with verticals lines the median, 1, 2, 3 and 4 sigmas, and with a black vertical line, the
position of the maximum observed. They show a remarkable similarity in shape.


Summarizing, the problem of detecting a gravitational-wave signal in noise can be posed as
a statistical hypothesis testing problem[23, 24], and we have studied here the problem to test the
hypothesis that a similar signal is recorded in the strains of two detectors, versus the hypothesis
that no similar signal has been recorded in both detectors with three di�erent statistical measures.
Our optimized measure OM, the likelihood measure and the correlation coe�cient measure all show
a statistical behavior that is very closed to Gaussian. In particular for the measure OM, we have
quanti�ed its behavior. The use of each of these three measures gives us very high con�dence levels
for the detection of similar signal in both detectors.


By comparing the level of signi�cance that we can give to the detection of a similar signal in
the two LIGO observatories data, for the GW150914 event, using the three measures, we conclude
that the measure OM, that we have introduced, is the strongest one.


In the next sections we apply the measure OM to a variety of di�erent events, presented in
chronological order.


4 Applying the measure OM to the 151012_2 event


The event 151012_2 was released as a `GWTC-1-marginal' kind, and assigned the GPS time
1128666662.2; equivalently the UTC Time: 2015-10-12 06:30. It was also assigned the network
SNR of 9.6. We could not found any suggestion for the arrival time at Hanford relative to Li-
vingston. We have chosen ∆tHL = 0.0099s.


We have �rst applied the same band-pass �lter of 22-1024Hz, but a preliminary study of the
strains showed a strong presence of low frequency noise. For this reason we decided to move the
low frequency of the pass band from 22 to 32Hz.


With this choice for the low limit of the pass band �lter, the strains have a Gaussian behavior
and the 20s graph of Λ, with a 0.5s window, is shown in Fig. 16 .
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Figure 16: Graph of Λ for event 151012_2 near the event time.


Although there are small peaks, they do not seem to be associated to a signal, but to the state
of the observatories; since noise of low frequencies is present around the time of the event; as it can
be seen in Fig. 17.


Figure 17: Closer look to the strains in time domain of 151012_2, near the peak around at
-2.5s before the event time.


In a work dedicated to 151012_2 one should consider further �lters; but in our case, we are just
studying the behavior of our measure to this marginal event. Then, from Fig. 16 , we conclude
that the measure OM does not show a con�dent signal near the time of the event for the duration
considered.


5 Applying the measure OM to the GW151012 event


The event GW151012 was released as a `GWTC-1-con�dent' kind, and assigned the GPS time
1128678900.4; equivalently the UTC Time: 2015-10-12 9:54; but we use in our work the time-event
1128678900.45. It was also assigned the network SNR of 9.3. This event shows low levels of signals.
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Due to the proximity to the previous event, in this case, it shares the characteristic of the noise
for this study.


In particular in reference [25] the authors suggest that the arrival time at Hanford relative to
Livingston is ∆tHL = −0.0006± 0.0006s. From the same reference, one can infer that the authors
estimate a signal duration of about 0.5seconds. Since the pre-processing �ltering techniques More19
normally shows longer signals than those found by the LIGO team, we tried several longer durations
and �nally settle for a signal duration of 0.8s. The preliminary application of the measure OM to
this event with ∆tHL = −0.0006s and duration of 0.8s gave no signal close to the time of the event.


Due to this negative result, we studied in detail the time delay and detected that the value
∆tHL = −0.0012s produces a signal in the Λ which we show in Fig. 18 .


Figure 18: Behavior of the measure Λ near the event GW151012; using the time delay
∆t−HL = −0.0012s, and a window of 0.8s.


We concludes from Fig. 18 that there is a weak signal corresponding to the comparison of the
Hanford and Livingston strains close to the GPS time 1128678900.45, corresponding to the arrival
time at Hanford relative to Livingston of ∆t−HL = −0.0012s and with a signal duration of at least
0.8s.


We have seen then that even in this problematic case, with low level signals, the measure OM
can assign a weak signal for the GW151012 event. Note however that this measure can not clarify
whether the signals are of astrophysical origin; since it only deals with the similarities.


Here we just study the behavior of the measure OM when applied to the GW151012 event. It
is not our intention to proceed further with a detailed study of the event, and instead concentrate
on the behavior of the measure on di�erent kinds of events. For further properties of GW151012
see for example [20, 26, 25, 27].


6 Applying the measure OM to the GW170104 event


The event GW170104 was released as a `GWTC-1-con�dent' kind, and assigned the GPS time
1167559936.6; equivalently the UTC Time: 2017-01-04 10:11. It was also assigned the network
SNR of 13.8. We have used version v2 of the corresponding LIGO strains.


According to reference [28] the relative Hanford to Livingston arrival time shift is ∆t = −0.003s;
and we have used ∆t−HL = −0.00305s in our work.


The authors of [28] also assert that the two strains are well calibrated in the the frequency range
[20,1024]Hz. For the pre-processing �ltering we used a pass band of [27.0,1003.0]Hz.
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The graphs appearing in [28] show strains with signals lasting approximately 0.11s. From
observing the strains after applying the pre-processing �ltering techniques More19, we detect signals
that last approximately 0.28s; which we use in the settings of the measure OM.


Figure 19: Behavior of the measure Λ near the event GW170104; using the time delay
∆t−HL = −0.00305s and a window of 0.28s.


It can be seen in the graph of Fig. 19 a very strong Λ signal near the event time. In fact,
the statistic of the optimize measure OM allows us to assign an outstanding level of signi�cance
of α = 5.5 × 10−8 to the detection of similar signals in the two LIGO observatories for the event
GW170104.


The impressive con�dent level that this measure gives for this event, corroborates the extension
of the physical signal to about 0.28s. This obviously deserves a detailed study of the event, but
as mentioned before, we are here concentrating in presenting the behavior of the measure OM to
di�erent events; and we will proceed with in-depth studies on another occasion.


7 Applying the measure OM to the GW190521 event


At the Gravitational Wave Open Science CenterGWOSC web page, the GW190521 event is pre-
sented in its fourth version as a release of type 'GWTC-2.1-con�dent'. However, since we have
noticed that the v4 version has been subjected to unknown kind of �lters, we work with version v1;
which is described as a release of type 'O3_Discovery_Papers'.


The LIGO/Virgo Collaboration has assigned the value 14.3 for their network SNR.


During this event the Virgo observatory was in operation, so that we also consider here its
strain.


According to [9], GW190521 is a short transient signal with a duration of approximately 0.1s.
Instead, after applying the pre-processing �ltering techniques More19, we have found that the
transient signal has a duration of approximately 0.35s; which we use in our work.


We found no information in the literature[9, 10] on the relative times of arrival of the signal
among the detectors. The comparison of the minus Hanford strain with the Livingston strain, gives
a time shift of arrival of approximately ∆t−HL = 0.0025s. When studying the comparison of the
Virgo strain with that of Livingston, and using the minus Virgo strain we found an acceptable time
shift of arrival of approximately ∆t−V L = −0.0005.


While for Hanford and Livingston strains we have used the pass band of [25,995]Hz, for the
Virgo strain we have to use the pass band of [35.3,883]Hz; due to the fact that Virgo had more
instrumental and seismic noise present.
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In Fig.20 it is shown the graph of Λ(L,−H) near the time of the event GW190521.


Figure 20: Behavior of the measure Λ(L,−H) near the time of the event GW190521; using
the relative Hanford to Livingston arrival time of ∆t−HL = 0.0025s and a window of 0.35s. For
both detectors the pass band was [25,995]Hz.


From the information of the graph in 20 , we infer a strong Λ signal for the pair (L,−H) near
the time of the event GW190521.


When comparing the Virgo signal, one has to take into account, that this detector had a higher
noise level, so that the duration of the signal has to be estimated; for which we found the value of
0.18s. Then, using the appropriate delay time, we found no signi�cant Λ signal; as it can be seen
in 21 .


Figure 21: Behavior of the measure Λ(L,−V ) near the event GW190521; using the rela-
tive Virgo to Livingston arrival time of ∆t−V L = −0.0005s and a window of 0.18s. For the
Livingston detector the pass band was [25,995]Hz. For the Virgo detector the pass band was
[35.3,883]Hz.


As already mentioned, the Virgo strain had higher levels of noise than the LIGO detectors; so
that it was somehow expected to have some di�culties when comparing the Virgo strain with the
others. In order to mitigate this issue, we have applied a low pass �lter of 350Hz to all strains,
before doing further comparisons. In Fig. 22 we show the graph of Λ(L,−V ) near the time of the
event GW190521, after applying a low pass 350Hz �lter.
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Figure 22: Behavior of the measure Λ(L,−V ) near the time of the event GW190521; using
the arrival time at Virgo relative to Livingston of ∆t−V L = −0.0005s and a window of 0.18s;
and an extra low pass �lter of 350Hz applied to both strains.


One can now see a strong signal for the measure Λ(L,−V ) relative to this new statistic. It must
be stressed that when applying the extra low pass 350Hz �lter, one is changing the statistics, so
that the maximum value of Λ in Fig. 22 can not be compared directly with that shown in Fig.
20; which refers to the previous statistics. In fact, the corresponding maximum value of Λ(L,−H)
after applying the 350Hz �lter; is much higher that the maximum shown for Λ(L,−V ) in the same
statistic.


This event of course deserves further study, which will contribute to the localization in the sky
of the source of the signal; but here we are concerned with presenting the behavior of the measure
OM to a variety of situations, and individual event detailed studies will be carried out elsewhere.


8 Final comments


The di�culties encountered in the identi�cation of transient gravitational signals in the strains
recorded by the interferometric gravitational-wave observatories, as LIGO/Virgo, have various
facets. We have already mentioned some of them. For example, that some of the detection tech-
nique use templates, which in turn use physical assumptions that are probably not tenable for
every situation. We have also recalled the problems involved when using whitening techniques.
Another di�culty found in the detection process is the appearance of noise transients (glitches)
that could trigger false detections. For example, in reference [29] they propose a way to identify
and characterize transient noise. Also in [30] the authors present a method to identify glitches in
gravitational-wave data. Another e�ort for glitch classi�cation is presented in [31]. In relation to
the problems presented by the appearance of glitches, it can be seen from the nature of our measure
Λ, as expressed in (3), that glitches, which occurs at one observatory, will be attenuated by design.


In this work we have presented a new optimized measure OM, denoted by Λ, which we have
shown is useful for the detection of similar signals in two strains of gravitational-wave observatories.
Our measure works with the data in the time domain, so that it makes e�cient use of computer
memory resources. With the measure OM we have been able to show the detection of similar
signals in the two LIGO strains of the GW150914 event, close to the time of the event, with a
duration of about 0.5s. This is more than the 0.1s lapse of time reported in LIGO articles. It is
essential to stress that �rst we have used the pre-processing �ltering techniques More19, presented
before[12], as a starting point in the treatment of the observed data at LIGO observatories. We
have demonstrated here that after applying our �lters the strains show a behavior very close to
Gaussian.
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We have also presented the calculation of the likelihood ratio L for the detection of two similar
signals in two strains. Due to the fact that several authors use correlation coe�cients[32, 33, 34,
35, 36, 37, 38] to analyze the observed data, we have also considered in section 2 the corresponding
correlation coe�cient ρ for the two strains. In appendix B we have presented the result of applying
the correlation coe�cient to the problem we have treated here; and it was shown that it gives
information with too much noise. We have also shown that it is a weaker measure, when compared
with Λ measure; see the table below also.


The application of the measure Λ, in section 3 , to the two LIGO strains of 22s around the
GW150914 event, with a nominal time shift of -0.007s, for (-)Hanford data, and with a window of
0.5s length, gives a clean, sharp peak as a function of time; which can be assigned an unre�ned
level of signi�cance α1 = 0.0063, or a level of signi�cance α = 0.00010, by recognizing a Gaussian
behavior for the logarithm of Λ. Another way of saying this is that we can trust the hypothesis
that there is a similar signal in both strains with a 99.99% con�dence level. When comparing our
measure with the likelihood ratio L statistics and the correlation coe�cient ρ statistics, we have
shown, that among the three measures studied in section 2 , our measure Λ can be used with a level
of signi�cance, for this problem, which is more than 30 times stronger than those than can be used
with the likelihood ratio L or the correlation coe�cient ρ. When applying the measure Λ to the
two LIGO strains of 40s around the GW150914 event, the behavior of the measure OM improves;
because now the level of signi�cance is α = 4.0e− 05; and the relation with the other two measures
also improves, since now they give signals that are more than 50 times weaker than our measure,
as shown en subsection 3.4 . This suggests the preference for the use of the measure OM.


We have also take the opportunity in section 3 to study the e�ects on the statistics after
whitening the strains. We have seen that if one follows the procedures, as suggested in LIGO
tutorials, one is left with a strain that is far from a Gaussian aspect. Only after trimming the
extremes of the strains, one is left with data that is close to a Gaussian behavior; as shown in Figs.
5 , 6 and 7 . However we have also shown, in subsection 3.3, that the statistics of the optimized
measure applied to the whitened data, does not show a Gaussian behavior, and therefore one can
not apply this methods in this case. This unwanted behavior is also observed with the other two
measures.


In the detailed study of event GW150914, we have shown that it is possible to �ne tune the
choice of the lapse of time considered, in order to maximize the response for the level of signi�cance;
as we demonstrated in subsection 3.2 . Naturally this �ne tuning can be done for each event; which
we avoid here in order to present examples of �rst approach to di�erent events.


To check the behavior of the measure OM with the strains of other events, we have also applied
a 22s study to the events: 151012_2, GW151012, GW170104 and GW190521 in sections 4 , 5 , 6
and 7 respectively. For each of these other cases we have also carried out preliminary studies in
which we have checked minimal Gaussianity, basic behavior in the time domain, phase behavior,
amplitude spectral density behavior and others; that we do not include in the text, in order to keep
the presentation focused on the measure OM response in di�erent situations.


The 151012_2 has been presented as a release of type `GWTC-1.marginal', and our study also
did not show any signal in the Λ graph.


Event GW151012 has been presented as a release of type `GWTC-1-con�dent' with a network
SNR of 9.3; which showed very low levels of signals. From the preliminary comparison of the
strains with the ∆t−HL value of -0.0006s suggested by LIGO, we could not found a signal in the Λ
graph. After further study we discovered that the value ∆t−HL = −0.0012s yields a weak signal
of the measure OM, using a signal duration of 0.8s; which is longer than the 0.5s LIGO suggested
duration.


The event GW170104 has been presented as `GWTC-1-con�dent' of the second observing run,
with a network SNR of 13.8. In this case, the signal was very strong and our optimize measure OM
was able to assign a level of signi�cance of α = 5.46× 10−8. For this statistics we have used a time
duration of 0.28s, instead of the 0.1s shown in the published data[28]. Thus, the optimize measure
OM can be used to test the duration of the signal for each event.
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The case of event GW190521 is of special interest because the Virgo detector was also in oper-
ation at that time. This event was released as of type `GWTC-2.1-con�dent', with its version v4 of
data. In comparing the di�erent data version we found unexplained �ltering, so that we have de-
cided to work with version v1 of the strains, which was released as of type `O3_Discovery_Papers'.
The GW190521 event was assigned the network SNR of 14.3 and a duration of approximately
0.1s[9]. Our study instead shows a duration of approximately 0.35s; which we have used in our
work. Although the Λ(L,−H) gave a strong signal, the initial settings did not show any signal for
the Λ(L,−V ). We found a signal after applying a low pass �lter of 350Hz to the strains, since the
spectrograms show that the signals where below this threshold. This case showed that the optimize
measure OM can be used even in problematic situations; in which more care has to be taken to
analyze the strains.


We have not pursued here any further the deserved individual detailed studies for each event,
since we are only concerned here with the presentation of the optimized measure OM. For this
reason we have only presented here the �rst approach of the application of the measure OM to a
variety of events with di�erent characteristics and of all three �rst LIGO/Virgo runs.


Note that in this work we have not attempted to determine the exact functional form of the
gravitational wave; since all the information comes from the comparison of the strains through the
use of our measure Λ; after preparation with the above mentioned pre-processing �ltering technique.


In table 1 we show the comparison of our measure OM with the other two widely known and used
measures, the likelihood ratio L and the correlation coe�cient ρ. Since one might feel uncomfortable
with recognizing a Gaussian behavior for the measures, we also include the indisputable weaker level
of signi�cance α1; calculated in terms of the direct Chebyshev inequality1, and having an undeniable
probabilistic interpretation. It can be seen that even using only this more conservative and so weaker
index, the measure OM is much stronger than the other two considered. In fact, only using the
conservative version one obtains excellent con�dence levels, since all con�dence coe�cients are of
the order of 99%; as it can be seen in table 2 .


events
level of signi�cance α1 level of signi�cance α
(Chebyshev inequality) (Gaussian statistics)
Λ L ρ ln(Λ) ln(L) ρ


GW150914 6.32e-03 nan 1.36e-01 (22) 1.047e-04 3.708e-03 (35) 3.384e-03 (32)
GW151012 1.21e-02 nan 1.40e-01 (12) 3.418e-04 4.031e-03 (12) 3.796e-03 (11)
GW170104 1.67e-03 nan 5.67e-02 (34) 5.462e-08 1.489e-05 (273) 1.347e-05 (245)
GW190521 2.11e-03 nan 6.46e-02 (31) 2.719e-07 5.416e-05 (199) 4.184e-05 (154)


Table 1: Comparison of the three measures for di�erent events and two levels of signi�cance.
The signi�cance α1 denotes the unre�ned level of signi�cance calculated from Chebyshev in-
equality; and the signi�cance α is calculated with the Gaussian statistics. In parenthesis we
show how weak is the measure with respect to the measure OM. The `not a number' sign `nan'
is due to the appearance of over�ows in standard calculations.


1We show in Appendix C that one can trust three signi�cant �gures for the strain size considered. But for a more


precise bound, we also provide in the appendix a corresponding inequality for a sample.


21







events
con�dence coe�cient γ
(Chebyshev inequality)


GW150914 0.99368
GW151012 0.9879
GW170104 0.99833
GW190521 0.99789


Table 2: Conservative con�dence coe�cients for detections for di�erent events, from the
measure OM.


Summarizing our work; we have started by developing the likelihood ratio strategy applied
to the detection of a similar signal in two time series, and found that this measure has some
di�culties involving very big exponents, and undesirable numerical over�ow errors. Then, in order
to circumvent the likelihood ratio problematic, we have de�ned the optimized measure OM; which
turned out to be stronger than the likelihood measure and the correlation coe�cient signals. The
comparison has been done in two ways; by direct application of Chebyshev inequality on the bare
quantities and, recognizing a Gaussian behavior of the exponents, using the standard normal level
of signi�cance. The superiority of the optimized measure OM is demonstrated in tables 1 and 2
above. The measure OM depends on several characteristics of the strains, and its values have to be
understood in terms of the local statistic of the strains. We have also shown that it can be applied
to a variety of real data, by covering �ve events, with very di�erent signal characteristics, belonging
to the observing runs O1, O2 and O3. In all these cases the measure OM gives reasonable and
sensitive signals, including the detection in the Virgo strain of a very low level signal. Therefore, it
has been shown in this article that the measure OM is a powerful versatile tool in post-detection
studies.


We plan to use this measure in a variety of situations, and we expect that it will become useful
in checking possible gravitational lensed black hole mergers by providing a new approach to this
problem.
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A Arguments to build the measure


A.1 Detection of a known signal


We here recall the basics of the likelihood method as applied to one set of data following the
notation of [15].


Samples of white Gaussian noise taken by an instrument having a bandwidth W = 2π∆ν will


22



https://gwosc.org





be Gaussian random variables with the probability density function (p.d.f.)


p1(x) =
1√


2πN0
e
− x2


2N0 , (8)


with


N0 =
NW


2π
= N∆ν; (9)


where N is the unilateral spectral density. The joint p.d.f. of samples x1, x2, ..., xn at times
t1, t2, ..., tn separated by intervals much longer than 2π/W will be statistically independent, given
by


p(x1, t1;x2, t2; ...;xn, tn) =
n∏
k=1


p1(xk) =
1


(2πN0)n/2
e


(
− 1


2N0


∑n
k=1 x


2
k


)
. (10)


In treating the detection of signals in the presence of this kind of noise, we shall imagine sampling
the random processes by an instrument whose bandwidth is much greater than that of any of the
signals involved. We can then apply eq. (10) to the values of the noise at times t1, t2, ..., tn that
are arbitrarily close.


Let s(t) be a signal superimposed on a Gaussian noise n(t); so that one observes


v(t) = n(t) + s(t), (11)


in the interval 0 < t < T . The hypotheses H0 is that the signal is not present, and the hypotheses
H1 is that the signal is present in the observation v.


The observations are made at n uniformly spaced times tk = k∆t = k Tn , with k = 1, 2, ..., n; with
values vk = v(tk). The observations for the two possibilities are described by the joint probability
density functions p0(v) = p0(v1, v2, ..., vn) and p1(v) = p1(v1, v2, ..., vn) under the hypotheses H0


and H1 respectively. The observer's decision is best made on the basis of the likelihood ratio,


L(v) = L(v1, v2, ..., vn) =
p1(v)


p0(v)
. (12)


Its value for the data at hand is compared with a �xed decision level L0; if L(v) < L0 the observer
decides that there is no signal present.


It is assumed that the measurements of v(t) at times tk are made by an instrument of such a
large bandwidth that however small the intervals ∆t between them, their outcomes have statistically
independent noise components. Then, under hypothesis H0 their joint probability density function
is


p0(v) =
1(


2πN0


)−n/2 exp
(
−


n∑
k=1


v2
k


2N0


)
, (13)


with N0 = N W
2π .


When the signal is present, the part of the observed vk due to the noise is vk − sk, with
sk = s(tk) a sample of the signal. Therefore, the data vk should behave as independent Gaussian
random variables with mean values sk and variances N0, namely, under hypothesis H1 the joint
p.d.f. of the data is,


p1(v) =
1(


2πN0


)−n/2 exp


(
−


n∑
k=1


(vk − sk)2


2N0


)
. (14)


The likelihood ratio, eq. (12), now becomes


L(v) = exp


(
n∑
k=1


2sk vk − s2
k


2N0


)
. (15)
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The observer chooses hypothesis H0 if L(v) < L0 or, because of the monotone character of the
exponential function, if


∆t


n∑
k=1


sk vk <
1


2
∆t


n∑
k=1


s2
k +N0∆t lnL0. (16)


Hence the observer can base the decision on the value of the quantity


Gn = ∆t
n∑
k=1


s(tk) v(tk), (17)


comparing it with some �xed amount Gn0 determined by some criterion. In the n-dimensional
Cartesian space with coordinates vk, the decision surface D is a hyperplane


n∑
k=1


s(tk) v(tk) = constant, (18)


which is perpendicular to the vector with components sk.
It can be seen that the natural inner product of the expected signal and the strain, that we


denote by < v, s >=
∑n


k=1 s(tk) v(tk), is the basic quantity of the likelihood calculation. And
if < s, s > can be neglected in front of < v, s >, or if one only concentrates in the functional
dependence on the data, one arrives at the working expression for the likelihood to be


L(v) = exp


(
< v, s >


N0


)
; (19)


where for the sake of simplicity in this presentation, we are assuming a constant N0, although the
expressions can easily be generalized. Normally, N0 is measured from the local properties of the
data, close to the time of the event under study.


In actual situations, in which the expected signal has some characteristic length in time, one
does not use the natural inner product but a convolution of it with an appropriately chosen window
w, with a width of the order of the characteristic length of the signal. So that one actually works
with the de�nition:


< v, s > (tj) =
∑
k


v(tk) s(tk)w(tj − tk). (20)


In this way one samples the data with an appropriate width.
The likelihood method is used by the LIGO/Virgo Collaboration as a standard way to obtain


the matched templates to the observed signals[14, 21].


A.2 The case of the same or similar unknown signal in two


detectors


To simplify the notation we are going to omit when possible the index denoting the time variation.
Let one detector observe the data v1, which is supposed to contain the signal s1 in the presence of
the noise n1, and similarly for the other detector so that


v1 = n1 + s1, (21)


and
v2 = n2 + s2; (22)


but for a moment let us consider �rst the basic assumption that both detectors contain the same
signal (Although it also applies to similar signals s2 = s1 + ε, for some small ε, as we will show
below.)


s1 = s2 = s. (23)
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Then one can express


n1 = v1 − s = v1 − v2 + n2; (24)


so that instead of (14) now we will have


p1(v1, s1) =
1(


2πN01


)−n/2 exp


(
−


n∑
k=1


(v(1)k − v(2)k + n(2)k)
2


2N01


)
; (25)


where v1 = (v(1)1, v(1)2, ..., v(1)k, ...) denotes the complete strain of detector 1. In this situation,
hypothesis 1 is that detector 1 have recorded the same signal as detector 2, and hypothesis 0 is
that detector 1 has not recorded the signal.


Similarly for detector 2 one also has


p2(v2, s2) =
1(


2πN02


)−n/2 exp


(
−


n∑
k=1


(v(2)k − s(2)k)
2


2N02


)
. (26)


Assuming the statistical independence of the measuring process in the two detectors we arrive
at the joint probability from the product of the probabilities calculated for each detector; namely


p(v1, s1,v2, s1) =
1(


2πN01


)−n/2 exp


(
−


n∑
k=1


(v(1)k − v(2)k + n(2)k)
2


2N01


)
1(


2πN02


)−n/2 exp


(
−


n∑
k=1


(v(2)k − v(1)k + n(1)k)
2


2N02


)
.


(27)


Note that also (25) can be understood as the conditional probability that detector 1 has observed
signal s given that detector 2 has observed signal s. (See section 2.4 of [16].) Then, using Bayes'
rule[39] one would also arrive at (27).


The likelihood ratio is calculated from the quotient of p(v1, s1,v2, s1) with the corresponding
p0(v1,v2); where in p0 there is no contribution from any signal and is given by


p(v1,v2) =
1(


2πN01


)−n/2 exp


(
−


n∑
k=1


(v(1)k)
2


2N01


)
1(


2πN02


)−n/2 exp


(
−


n∑
k=1


(v(2)k)
2


2N02


)
.


(28)


This quotient has the form of a product L1 L2.


Let us start by calculating the likelihood L1 considering just one of these factors, and, as above,
using s1 = s2, so that


L1(v1) =
p1(v1)


p0(v1)


= exp


[
n∑
k=1


2v(1)k v(2)k − v2
(2)k − 2v(1)k n(2)k + 2v(2)k n(2)k − n2


(2)k


2N01


]
.


(29)
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It is convenient to manage the algebra in the following way:


n∑
k=1


2v(1)k v(2)k − v2
(2)k − 2v(1)k n(2)k + 2v(2)k n(2)k − n2


(2)k


=


n∑
k=1


2v(1)k v(2)k − v(2)k(v(1)k + n(2)k − n(1)k)− 2v(1)k n(2)k + 2v(2)k n(2)k − n2
(2)k


=


n∑
k=1


2v(1)k v(2)k − v(2)kv(1)k − v(2)kn(2)k + v(2)kn(1)k


− 2(s(1)k + n(1)k) n(2)k + 2(s(2)k + n(2)k) n(2)k − n2
(2)k


=


n∑
k=1


v(1)k v(2)k − (s(2)k + n(2)k)n(2)k + (s(2)k + n(2)k)n(1)k


− 2(s(1)k + n(1)k) n(2)k + 2(s(2)k + n(2)k) n(2)k − n2
(2)k


=
n∑
k=1


v(1)k v(2)k − s(2)kn(2)k − n2
(2)k + s(2)kn(1)k + n(2)kn(1)k


− 2s(1)kn(2)k − 2n(1)k n(2)k + 2s(2)kn(2)k + 2n2
(2)k − n2


(2)k


=
n∑
k=1


v(1)k v(2)k + s(2)kn(1)k + s(2)kn(2)k − 2s(1)kn(2)k − n(1)k n(2)k.


(30)


In this algebraic manipulation we have kept the identities of s1 and s2 to allow for the situation
s2 = s1 + ε, with max |ε| � max |s1|.


Since by assumption the noises n1 and n2 are considered to have independent Gaussian behavior;
we can take the size of the interval big enough so that we attain


n∑
k=1


s(2)kn(1)k ≈
n∑
k=1


s(2)kn(2)k ≈
n∑
k=1


s(1)kn(2)k, (31)


and therefore
n∑
k=1


s(2)kn(1)k +


n∑
k=1


s(2)kn(2)k − 2


n∑
k=1


s(1)kn(2)k ≈ 0, (32)


and we also have
n∑
k=1


n(1)k n(2)k ≈ 0. (33)


So that we arrive at


L1(v1) = exp


[
n∑
k=1


v(1)k v(2)k


2N01


]
; (34)


for the likelihood of having the signal s in v1 that is contained in v2. From the considerations above,
we deduce that the joint likelihood of having the same signal in both detectors is then


La(v1,v2) = exp


[
1


2


( 1


N01


+
1


N02


) n∑
k=1


v(1)k v(2)k


]
; (35)


where in practical situation we evaluate N0 from the sample variance so that the �nal expression is


L(v1,v2) = exp


[
m− 1


2


( 1∑m
k=1 v


2
(1)k


+
1∑m


k=1 v
2
(2)k


) n∑
k=1


v(1)k v(2)k


]
; (1)
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where the width of the window to calculate σ2, that is m, is chosen appropriately depending on the
nature of the observations vk, and we are assuming that the means are zero.


This estimation of the desired measure have some di�culties. The exponent is huge, when
using actual LIGO data, and it does not emphasize the comparison of the data in both strains. To
understand this in detail, let us see what is the behavior of the logarithm of this measure, when it
is applied to the data of GW150914 after post-processing[12], which we shown in �gure 23 ; where
we have advanced the time axis by the width of the window.


Figure 23: Logarithm of the likelihood ratio applied to the strain at Livingston and the one
at Hanford from -10s to 10s around the time of the event GW150914 with the nominal shift of
-0.007s.


A.3 The new measure


Due to the unpleasant behavior of the likelihood ratio discussed above, we decide to de�ne a new
measure and so we introduce some changes to the likelihood ratio to strengthen the comparison
and to moderate the amplitude, so that it becomes useful for the system we have in mind.


To motivate our choice, let us note that for pure and independent noise one has


(n1 − n2)2 = (n1)2 + (n2)2 − 2(n1n2) = (n1)2 + (n2)2 = σ2
1 + σ2


2. (36)


Also note that when both variances are similar, then one has that 1
σ2
1


+ 1
σ2
2
is approximately 4


σ2
1+σ2


2
.


So that instead of 1
N01


+ 1
N02


we can use the estimation 4


(v1−v2)2
; which has the advantage that


v1 − v2 would cancel the information of the signal; and therefore help in accentuating the measure
at the time of coincidence.


Then, in order to control this too sensitive behavior, we moderate the measure to be


Λa(v1,v2) = exp


[
1


σ∗12


( 1∑m
j=1(v(1)j − v(2)j)2


) n∑
k=1


v(1)k v(2)k


]
, (37)


where σ∗12 is the standard deviation of
(


1∑m
j=1(v(1)j−v(2)j)2


)∑n
k=1 v(1)k v(2)k in the lapse of time of


interest.
Employing the notation of the inner product as in (20), which makes use of the window w, we


arrive at the �nal expression for the measure given by


Λ(v1,v2) = exp


[
1


σ∗12


< v1,v2 >


< (v1 − v2), (v1 − v2) >


]
; (38)
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where σ∗12 is calculated with the window w also.


This measure gives reasonable results with actual LIGO data.


B Behavior of the correlation coe�cient


A natural question is whether the correlation coe�cient between the two set of data coming from
both detectors, is enough to have a well behaved measure for determining if there is a common
signal in the strains. For this reason we here present the graphs that show the behavior of the
coe�cient:


ρv1,v2 ≡
< v1,v2 >√


< v1,v1 >< v2,v2 >
; (4)


where we are assuming zero average for both strains. This measure is also called the sample
correlation coe�cient[15].


Figure 24: On the left the correlation coe�cient between the strain at Livingston and the
one at Hanford from -10s to 10s around the time of the event. On the right the exponential of
the correlation coe�cient in the same lapse of time.


In �gure 24 it is shown the behavior of the correlation coe�cient, where we have made use of
the same window employed for the Λ measure, and where we have advanced the time axis by the
width of the window. We also show the behavior of the exponentiation of the correlation coe�cient,
to see if the relation was augmented; but it can be seen that although there is a local maximum
close to the time of the event, both graphs give information with too much noise. So, comparing
this with the cleaner behavior of our measure Λ, as shown in �gure 8 , we choose Λ; which provides
a much better tool for analysis.


C Chebyshev inequality for a sample


The case of a sample has been considered in reference [40], and based on this, in [41] it was presented
the following inequality. Let r ≥ 2 a �xed integer, Y1, Y2, ..., Yr andX a weakly exchangeable sample
(e.g. identically and independently distributed (i.i.d.), but not necessarily) from some unknown
distribution such that P (Y1 = Y2 = ... = Yr = X) = 0, and λ ≥ 1. Denote Ȳ = 1


r


∑r
i=1 Yi and


V ar(Y ) = 1
r−1


∑r
i=1(Yi − Ȳ )2 the sample mean and variance respectively, and Q2 = r+1


r V ar(Y ).
Then,


P (|X − Ȳ | ≥ λQ) ≤ 1


r + 1


⌊
r + 1


r


(r − 1


λ2
+ 1
)⌋


; (39)


where the notation is: bxc is the largest integer less than x.


28







In order to relate to equation 6, let us de�ne t by λQ = tσ; where σ is the sample standard


deviation. Then, one has λ
√


r+1
r = t; so that, using


1


r + 1


⌊
r + 1


r


(r − 1


λ2
+ 1
)⌋


=
1


r + 1


⌊
r + 1


r


((r − 1)(r + 1)


rt2
+ 1
)⌋


; (40)


one has


P (|X − Ȳ | ≥ tσ) ≤ 1


r + 1


⌊
(r + 1)


(
1


t2
(
1− 1


r2


)
+


1


r


)⌋
. (41)


Let us note that for 22 seconds at a sample rate of fs = 16384, one would have r = 360448; so


that 1
r = 2.77432×10−6 and 1


r2
= 7.69688×10−12. Let us de�ne g(r, t) = 1


r+1


⌊
(r + 1)


(
1
t2


(
1− 1


r2


)
+ 1


r


)⌋
.


In Fig. 25 we shown the graph of the relative di�erence of inequality 41 with 6 for the range of t
in (2, 30); which covers the values for the cases studied here.


Figure 25: Relative di�erence of sample inequality and original inequality.


It is deduced that in the range t ∈ (2, 30) one can safely trust at least three signi�cant �gures
of the original inequality for this size of sample; which we have tested numerically for the events
considered.
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Using two different approaches, we study imaging in the strong-lensing regime taking into account the
effects of plasmatic environments on light propagation. First, we extend the use of a perturbative approach
that allows us to quickly and analytically calculate the position and shape of the images of a circular source
lensed by a galaxy. Such an approach will be compared with that obtained from the numerical solution of
the lens equations. Secondly, we introduce a three-dimensional spheroidal model to describe the spacetime
associated with the dark matter halo around the lens galaxy and an associated optical metric to incorporate
the presence of the plasma medium. The (chromatic) deformation on caustic and critical curves and
associated multiplicity of images is also analyzed for particular configurations.


DOI: 10.1103/PhysRevD.107.084041


I. INTRODUCTION


In general, in the optical geometric limit, electromag-
netic radiation propagates along nongeodesic curved tra-
jectories when interacting with an in-homogeneous optical
medium, as opposed to the geodesic paths in the gravity
pure case. While such optical phenomena are well-known
in Earthbound laboratories, analogous optical effects have
also been observed to occur in astrophysical scenarios
across the electromagnetic spectrum. Due to rays passing
through an intervening optical medium, a viewer may
observe multiple images of distant objects, distorted and
apparently shifted from their true locations. In fact, such
cosmic lensing scenarios can display both converging and
diverging behavior depending on the nature of the lenses
involved.
Gravitational lensing occurs when light rays passes by a


massive object. In this case, the curvature of spacetime
behaves as an effective optical medium that depends
on the derivatives of components of the metric of the
spacetime produced by the lens [1–3]. As an example, an
isolated point mass generally behaves like a converging
lens, acting to magnify a well-aligned distant source.
Since all frequencies of radiation are affected equally
by spacetime curvature, gravitational lensing effects are
achromatic. At present, gravitational lensing is known on
many scales, ranging from microarcsecond images arising
from individual stellar lenses [4] to galaxies [5] and entire
galaxy clusters [6].
In contrast to gravitation, the ionized matter of the


interstellar medium (ISM) may also act as an optical


medium affect our view of distant objects, albeit an optical
medium with vastly different properties than gravitational
fields. The plasma component of the turbulent and clumpy
ISM may obscure background radio sources, causing
demagnification analogous to a diverging lens [7]. Due
to the frequency dependence of the plasma dispersion
relation, the lensing effect of plasma lenses are chromatic,
strongly altering the paths of radio waves [8–12]. It is
believed that such plasma structures are responsible for
extreme scattering events (ESEs) [13,14], in which the flux
density of radio-loud background sources (1 GHz) are
observed to dim by large amounts (exceeding 50%) [15].
The ESE phenomena may also be closely related to pulsar
scintillation, which has been the motivation behind many
exotic plasma distributions beyond simple spherical sym-
metry such as filaments [16,17] and sheets of ionized
matter [18,19]. In fact, plasma lenses do not display
exclusively diverging optical behavior, since they can also
be underdensities in an overdense background. Such ‘pits’
then behave like converging chromatic lenses [20]; how-
ever, recent observations seem to exclude this possibility at
least for a subset of observed ESEs [14]. One of the most
striking observations of plasma lensing has occurred due
to the observation of a black widow pulsar through the
ablated wind of its companion [21,22]. Plasma lenses
have also been suggested to affect the propagation of
fast radio bursts [23,24]. Therefore, plasma lenses are
highly relevant to topics on the leading edge of astrophys-
ics. However, many aspects of these phenomena remain
mysterious, in particular the small physical extent of spheri-
cally symmetric models suggest extremely large central
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densities [15]. Therefore, further study of these enigmatic
structures is necessary.
In this work we are interested in the study of lens


effects produced by the presence of plasma in strong-
lensing situations, that is, when multiple source images
are produced and they are highly distorted. Some studies
on strong gravitational lensingþ plasma phenomena have
been previously analyzed by various authors; for example
to analyze how the presence of plasma atmospheres
in neutron stars affects the luminosity curves [25–28],
or the shadow of black holes [29–35] (strong-lensingþ
strong-field effects); or even to the study of arc lensing
formation (through ray tracing numerical integration)
when the acting lenses are formed by galaxies [36], or
in a situations of microlensing [37,38] (strong lensingþ
weak field). Note that as in [36] the ray tracing integration
has been carried out numerically, it is difficult in many
situations to make a more detailed study of how the
different parameters that describe the plasma affect the
formation of images and their multiplicity. It is our
intention to contribute with a more detailed study on the
effect of plasma in galaxies on images from distant sources,
for which we will present a series of contributions: (a) we
analyze more generic plasma models than those usually
studied that are spherically symmetric; (b) we present a
perturbative formulation of the solutions to the lens
equation, when in addition to the gravitational field, the
presence of plasma is taken into account, which will allow
us to give analytical formulas to describe the images;
(c) a lens given described by a three-dimensional spheroi-
dal model and the study of light rays in the strong-lensing
regime.
This paper is organized as follows. In Sec. II we present


the basic equations and an extension of a perturbative
method to solve the lens equations originally introduced
by Alard [39] for the gravitational pure case. We also
present a general formula for an iterative solution of the
perturbative equations. In Sec. III we present the models
for the gravitational potentials and plasma profiles, and
their effect on the lensed images. In Sec. IV we carry out a
comparison between the analytical and the numerical
solutions and the improvement that successive iterations
can produce. In Sec. V we describe the critical and caustic
curves and the multiplicity of the images for the consid-
ered models. In Sec. VI we change our approach,
introducing a full four-dimensional metric describing a
3D spheroidal model for the dark matter halo of the galaxy
that act as a lens. Different optical scalars, critical and
caustic curves and images of the lensed sources are also
studied.
Throughout this paper we assume flat ΛCDM cosmol-


ogy with Ωm ¼ 0.315, and H0 ¼ 67.4 km s−1
Mpc , based on the


observations of the Planck Collaboration [40]. In addition,
we consider a lens and a source with redshift zl ¼ 0.04 and
zs ¼ 0.1, respectively.


II. BASIC EQUATIONS


In the thin lens approximation, the lens equation relating
the positions of the source to those of the images through
the angle of deflection and can be written as follows:


β⃗ ¼ θ⃗ − α; ð1Þ


where β⃗, θ⃗ denote the angular position of the source and of
the image, respectively, and α is related to the deflection
angle α̂ by α ¼ Dls


Ds
α̂. In addition, Dl, Ds, and Dls indicate


the angular-diameter distance of the observer to the lens,
the observer to the source, and the lens to the source.
Let us consider as a model for the lens a static and


asymptotically flat spacetime, with coordinates fx0; xig,
with xi, i ¼ 1..3 being spacelike coordinates. On the other
hand, we will also consider in this section that the spatial
components of the energy-momentum tensor are negligible,
so the gravitational lens (not counting the plasma) will be
completely described by its matter distribution. Under this
assumption the lens equation can be rewritten in terms of
the lens potential ψgrav as follows:


β⃗ ¼ θ⃗ −∇θ⃗ψgravðθ⃗Þ; ð2Þ


which is related to the deflection angle α through
αðθ⃗Þ ¼ ∇θ⃗ψgravðθ⃗Þ, where ∇θ⃗ is the gradient with respect


to angular position θ⃗ in the lens plane. We refer ψgrav as the
effective lensing potential and it is related to the Newtonian
potential Φ as follows:


ψgravðθ⃗Þ ¼
Dls


DlDs


2


c2


Z
ΦðDlθ⃗; xÞdx; ð3Þ


being x the line-of-sight distance between the observer and
the source.
Since we are interested in the average plasma medium


surrounding galaxies, for our purposes, it will suffice to
consider it as a cold, nonmagnetized plasma. Neglecting the
birefringence effects of galactic magnetic fields is based
on the assumption that they are generally expected to be
of very low intensity (of the order of a few μG [41]), and
therefore their effects on image formation will be negli-
gible. However, they could be considered if one wishes to
study the polarization of light due to the Faraday rotation
effect [42]. In turn, magnetic fields must be taken into
account in situations of plasma lensing in the vicinity of
compact objects. In that situations, the plasma lensing
effect can be useful in constraining the value of magnetic
fields [43].
As the observation frequencies will generally be higher


than the associated plasma frequencies, the ISM can be
considered an electromagnetic continuous medium with an
associated refractive index [23,44–46].
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n2ðxÞ ¼ 1 −
ω2
eðxiÞ


ω2ðxiÞ ; ð4Þ


where ωðxiÞ is the frequency of the light ray at xi and the
electron plasma frequency ωeðxiÞ is related to the electron
number density neðxiÞ as follows:


ω2
eðxiÞ ¼


4πe2


m2
e
neðxiÞ; ð5Þ


where e and me are the electron charge and the electron
mass, respectively.
In analogy with the gravitational lensing theory, the


cold nonmagnetized plasma effect on the light rays can be
codified in a frequency-dependent effective potential [13],


ΦðxiÞ ≈ c2ω2
eðxiÞ


4ω2ðxiÞ : ð6Þ


In Eq. (6) we use the large observational frequency limit,
ω ≫ ωe, which is suitable in general astrophysical situa-
tions. In turn, on its way from the source to the observer,
the light will experience a gravitational redshift due to the
presence of the lens and a cosmological redshift, the former
being negligible with respect to the latter because the lens-
observer distance is large enough. For this reason we will
only take into account the effect of the cosmological
redshift so that the frequency of the photons in the position
of the lens will be ð1þ zlÞω, where zl is the cosmological
redshift of the lens and ω is the observational measured
angular frequency.
Considering a light ray propagating through the plasma


in a x̂ direction, the electron column density Ne is given by
the following expression usually known as dispersion
measure,


Neðθ⃗Þ ¼
Z


neðxiðxÞÞdx; ð7Þ


which can be estimated from time-delay measurements.
Finally, the effective lensing potential in terms of the
observational frequency ω, the effective lensing potential
is given by [13],


ψplasmaðθ⃗;ωÞ ¼
Dls


DsDl


2πc2


ω2ð1þ zlÞ2
reNeðθ⃗Þ; ð8Þ


where re ¼ e2


mec2
is the classical electron radius and the


observation frequency ν measured in Hz is related to ω by
ν ¼ ω


2π. Therefore, the total deflection angle will be given


by αðθ⃗Þ ¼ ∇θ⃗ðψgravðθ⃗Þ þ ψplasmaðθ⃗;ωÞÞ. Note that the total
deflection angle in this approximation is curl free. Hence,
the associated optical scalars can be described by the shear
and convergence as in standard gravitational lensing theory.


It is also worth mentioning that, in contrast to the
convergent effect on light rays produced by gravitational
fields, plasma lensing can produce a divergent effect if
there is an overdensity of electronic charge with respect to
the ISM. In contrast, plasma lenses that are underdense
compared to the surrounding ISM will produce converging
lenses and magnify background sources.
It is important to note that in this work we will not


consider the plasma-gravity interaction which in the sit-
uations under consideration is negligible compared to the
pure gravity contribution as well as the pure plasma one.


A. Perturbative solution of the lens equation


In the following we will briefly review a perturbative
solution of the lens equation in the strong gravitational-
lensing regime that is often accurate for describing gravi-
tational arcs as well as multiple images. This method
introduced by Alard (see [39]) starts from an exact solution
of the gravitational lens equation for a point source aligned
with the line of sight for a spherically symmetric lens,
resulting in a circular image of the source generally known
as Einstein ring.
Let us consider a circular source with (angular) radius


δβs centered at ðδβ10; δβ20Þ in the source plane. Explicitly,


δβ⃗ ¼
�
δβ1


δβ2


�


¼
�
δβ10 þ δβs cosϕs


δβ20 þ δβs sinϕs


�
; with 0 ≤ ϕs ≤ 2π: ð9Þ


On the other hand, each point at the boundary of the source
will have an image position θ⃗ that can be written as


θ⃗ ¼
�
θ1


θ2


�
¼


�
θ cosϕ


θ sinϕ


�
; with 0 ≤ ϕ ≤ 2π; ð10Þ


with θ ¼ jθ⃗j depending on ϕ.
Therefore, in a gravitational lensing system where the


effect of the plasma surrounding the lens is also taken into
account, the lensing equation is given as follows:


δβ10 þ δβs cosϕs ¼ θ cosϕ − cosϕ
∂ψ


∂θ
þ sinϕ


θ


∂ψ


∂ϕ
; ð11Þ


δβ20 þ δβs sinϕs ¼ θ sinϕ − sinϕ
∂ψ


∂θ
−
cosϕ
θ


∂ψ


∂ϕ
: ð12Þ


where


ψ ¼ ψðθ;ϕÞ ¼ ψgravðθ;ϕÞ þ ψplasmaðθ;ϕÞ: ð13Þ


In particular, these equations imply the following [47],
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θ ¼ δβ10 cosϕþ δβ20 sinϕþ ∂ψ


∂θ
�


ffiffiffiffiffiffiffiffiffiffiffi
Δexact


p
; ð14Þ


with


Δexact ¼ δβ2s −
�
1


θ


∂ψ


∂ϕ
− δβ10 sinϕþ δβ20 cosϕ


�
2


: ð15Þ


Note that Eq. (14) is an exact and implicit equation for θ.
We will now review the perturbative method introduced


by Alard to solve the lens equation and we will present a
new iterative expression that improves its first order
approximation. It should be noted that this method was
presented in the case of pure gravity and here we are
extending it to the case with plasma.
Let us start by considering a spherically symmetric lens


characterized by a lens potential ψ0ðθÞ around the line of
sight. This potential can have the contribution of both
gravitational field and the plasmatic medium. Let us
consider a point source located along the line of sight at
β⃗ ¼ 0. In this situation the lens equation reduces to


θ −
∂ψ0ðθÞ
∂θ


¼ 0: ð16Þ


We denote its solutions as θp. In the pure gravity case,
these solutions are known as the Einstein radius and wewill
denote them as θE or jθ⃗Ej. As we will see, the solution θp
will also have a ring shape in the image plane, but we will
reserve the term Einstein ring for the pure gravity case.
On the other hand, we will work with mass and plasma


profiles that are commonly used in astrophysics and that
present these two characteristics: (a) there is a solution to
Eq. (16) and (b) they present a unique circular solution in
the plane of the images (the Einstein ring in pure gravity
case). Other plasma profiles, different from those used in
this work, allow us to obtain several of these circular
solutions to Eq. (16), such as polynomial plasma models
[37]. Although the perturbative method presented in this
section does not present any impediment to treat these
cases, we will leave its study for later works.
Let us now consider a small deviation in the position of


the source as well as in the circular symmetry of the lens
potential, that is, we will introduce a small ellipticity in the
lens potential,


β⃗ ¼ δβ⃗;


ψðθ⃗Þ ¼ ψ0ðjθ⃗jÞ þ δψðθ⃗Þ: ð17Þ


We will also assume that these small deviations in the
circular symmetry and in the position of the source will
imply a small deviation of the background solution, which
presents a circular shape in the plane of the images. Then
introducing the following decomposition,


θ⃗ ¼ θ⃗pE þ δθ⃗; ð18Þ


the lens equation can be rewritten as


δβ⃗ ¼ θ⃗pE þ δθ⃗ −∇θ⃗½ψ0ðjθ⃗jÞ þ δψðθ⃗Þ�θ⃗¼θ⃗pþδθ⃗: ð19Þ


Even more, we assume the three quantities δβ⃗,
δψðθ⃗Þ and δθ⃗ are of the same order of magnitude.
To this order the perturbed lens equation is written as
follows:


δβ⃗ ¼ δθ⃗ − ½ðδθ⃗ ·∇θ⃗Þ∇θ⃗ψ0ðjθ⃗jÞ þ∇θ⃗δψðθ⃗Þ�jθ⃗¼θ⃗p
: ð20Þ


Let us consider a circular source located at ðδβ10; δβ20Þ
with radius δβs. Explicitly,


δβ⃗¼
�
δβ1


δβ2


�
¼
�
δβ10þδβs cosϕs


δβ20þδβs sinϕs


�
; with 0≤ϕs ≤ 2π:


ð21Þ


On the other hand, the image position can be written as


θ⃗¼
�
θ1


θ2


�
¼
�ðθpþδθÞcosϕ
ðθpþδθÞsinϕ


�
; with 0≤ϕ≤ 2π; ð22Þ


with θpE ¼ jθ⃗pEj.
At leading order the two components of the lens


equations are then given by


δβ10þδβs cosϕs


¼
�
δθcosϕ


�
1−


∂
2ψ0


∂jθ⃗j2
�
− cosϕ


∂δψ


∂jθ⃗j
þ sinϕ


jθ⃗j
∂δψ


∂ϕ


�����
jθ⃗j¼θp


;


δβ20þδβs sinϕs


¼
�
δθ sinϕ


�
1−


∂
2ψ0


∂jθ⃗j2
�
− sinϕ


∂δψ


∂jθ⃗j
−
cosϕ


jθ⃗j
∂δψ


∂ϕ


�����
jθ⃗j¼θp


;


ð23Þ


and combining these equations we finally obtain,


δθ¼ 1


1− ∂
2ψ0


∂jθ⃗j2


�
∂δψ


∂jθ⃗j
þδβ10 cosϕþδβ20 sinϕ�


ffiffiffiffi
Δ


p �����
jθ⃗j¼θp


;


ð24Þ


where


Δ ¼ δβ2s −
�
1


jθ⃗j
∂δψ


∂ϕ
− δβ10 sinϕþ δβ20 cosϕ


�
2


: ð25Þ
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From (25) we can see that the region on the image plane
where the formation of images are allowed is characterized
by the condition


Δðjθ⃗j ¼ θp;ϕÞ ≥ 0: ð26Þ


B. N-iteration’s formula


In order to construct the first approximation to the
image position we started with the image at order zero
placed in θ⃗ ¼ θ⃗pE and we find the corrected images placed
at θ⃗p1 ¼ θ⃗pE þ δθ⃗p1 . This method can be easily extended to
higher orders. Assuming that the images at the (i − 1)th
iteration is known, we perturb the potentials around
these positions and computed new corrections. That is,
knowing θ⃗pi−1, we can construct a new correction given by


θ⃗pi ¼ ðjθ⃗pi−1j þ δθpi Þðcosϕ; sinϕÞ. After repetition of the
same procedure as before, we find


δθpi ¼
∂ψ0ðθÞ
∂jθj − θ þ c


1 − ∂
2ψ0


∂jθj2


����
θ⃗¼θ⃗pi−1


ð27Þ


where


c ¼
�
∂δψ


∂jθ⃗j
þ δβ10 cosϕþ δβ20 sinϕ�


ffiffiffiffi
Δ


p �����
jθ⃗j¼θpi−1


: ð28Þ


Equation (27) determines the image position in an iterative
way. As we will shown in the following, in most cases
a first iteration is sufficiently to compute in an analytical
way the (approximate) shapes and location of the images.
Despite the simplicity of Eq. (27) we have not knowledge
of a previous presentation of this formula in literature.


III. GALAXY MODELING AND IMAGE
FORMATION


In order to study the effect of plasma on image formation
as well as its influence on the structure of caustic and
critical curves we need to specify first the mass density
profile of the lens or alternatively its lensing potential, and
second its electron density profile. In the first part of this
work we will only consider galaxy lenses with an gravi-
tational elliptical lensing potential modelled by the singular
isothermal elliptical model (SIE) which is widely used to
model dark matter halos in galaxies both in the theory of
gravitational lensing and in studies of stellar dynamics. In
Sec. VI we will perform a detailed analysis of lensing effect
produced by a specific 3D spheroidal model which is an
exact solution of the Einstein equations.
SIE profile is characterized by the following lens


potential,


ψgravðθ⃗Þ ¼ θEθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2ϕ


p
ð29Þ


where η is the ellipticity, θ≡ jθ⃗j and θE ≡ jθ⃗Ej is the
Einstein ring which is given in terms of the velocity
dispersion σc as follows:


θE ¼ 4π
σ2c
c2


Dls


Ds
: ð30Þ


Regarding the electron density profile models around
galaxies, we will consider different continuous distribu-
tions. Some of these models were introduced in the
literature to fit data from other galaxies [48–50] or our
own Galaxy [51–54]. In the latter case, these models (with
different levels of sophistication) were constructed from the
dispersion measure associated to pulsars and also take into
account the contribution of the Magellanic Clouds and the
intergalactic medium. These models are very useful to
analyze distances to pulsars in our own galaxy. Moreover,
in [50], the LOFAR Multifrequency Snapshot Sky Survey
(MSSS) was used to investigate the radio continuum
spectra for a large sample of nearby star-forming galaxies
using some of the models discussed here.
In general, the observation frequency will be larger than


the plasma frequency. Therefore, the plasma environment
will produce a small difference in the position and shape of
the images with respect to the high-frequency optical limit
(pure gravity case). However, as we will see in the next
sections, for particular electron density profiles, observa-
tion frequencies and for some given orientation of the
observer, the multiplicity of images can change. We refer to
[55–57] for observational works on multiple imaging in
plasma lensing.
We will start with a spherically symmetric electron


distribution with an exponential decay and then we will
consider other less restrictive profiles.
First of all, we need to specify the coordinate system that


we will use. As we can see in Fig. 1 we have chosen the
x0-axis in such a way that it coincides with the line of sight


FIG. 1. Coordinate system used centered at the position of the
lens. The observer is placed at an angular distance Dl from the
lens. A light ray coming from the source intersect the lens plane at
an angle ϕ and at a distance (impact parameter) b ¼ Dlϕ from the
center of the lens.
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while the plane of the lens coincides with the y0z0 one. In
addition, we have defined in the same plane the angle φ as
shown and a radial cylindrical coordinates rc is defined in
the x0y0-plane (not shown). We reserve r as a spherical
radial coordinate. Then it is straightforward to check the
following relationships:


y0 ¼ b cosφ ¼ Dlθ cosφ; ð31Þ


z0 ¼ b sinφ ¼ Dlθ sinφ; ð32Þ


rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ ðDlθ cosφÞ2


q
; ð33Þ


r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ ðDlθÞ2


q
: ð34Þ


In the next subsections we describe the plasma models we
will use in this work.


A. Spherically symmetric plasma model with
exponential decay


As a first model we will consider a spherically symmetric
electron density with exponential decay given by the
following expression:


neðrÞ ¼ n0e−r=rp : ð35Þ


The effect of this kind of plasma profiles on image
formation has already been numerically analyzed in the
past by Er and Mao in [36]. Here we will develop a
perturbative analysis. In turn, this kind of model will serve
as a seed to obtain the dispersion measure in more generic
models that do not respect spherical symmetry and that will
be discussed in the next subsections. This model is inspired
by observational fits proposed in the past to study the
distribution of ions in H II regions of several galaxies. In
[48], based on observations of the galaxy M51 (a galaxy
facing the line of sight), values of the electron density
n0 ¼ 10 cm−3, and 1 kpc for the characteristic radius rp
were estimated. Although in such a galaxy r fulfills the role
of galactocentric radius, measured in the direction of the
plane that contains the galaxy, in Eq. (35) r is assumed to be
a spherical coordinate (it will be relaxed in the next
subsections).
Because of the integral (7) cannot be solved analytically


for this specific plasma model, we cannot obtain an
analytical expression for the electron column density Ne.
Far from being a limitation of this model, since such
integral can always be solved numerically, we chose to fit a
function in a suitable range in order to obtain an analytical
expression for the solution of the lens equation. Then, we
approximate the electron column density Ne as follows:


NeðθÞ ≈ An0rpe−ðθ=Bθ0Þ
C
; ð36Þ


where θ0 ¼ rp=Dl, and A, B, and C are dimensionless
parameters that we obtain from the fitting. Note that the
value of A, B, and C will depend on the particular choice of
rp. In Fig. 2 we graphically show as an example the fitting
implemented in Eq. (36) for this kind of plasma with
parameters n0 ¼ 60 cm−3 and rp ¼ 1 kpc. We see that in
the range under consideration, which corresponds to the
range where we will have images (see Fig. 3), the
implemented fitting is quite adequate with an error of less
than 0.25%, while the fitting parameters remain as follows:
A ¼ 2.003� 0.002, B ¼ 1.55� 0.01, C ¼ 1.47� 0.01.
The plasma lensing potential for this model reads,


ψplasmaðθ;ωÞ ¼
Dls


DsDl


2πc2


ω2ð1þ zlÞ2
Aren0rpe


−ð θ
Bθ0


ÞC : ð37Þ


With the intention to simplify the expressions in the
following sections we rewrite (37) as


ψplasmaðθ;ωÞ ¼ ψ2
ωe


−ð θ
Bθ0


ÞC ; ð38Þ


where


ψ2
ω ¼ Dls


DsDl


2πc2


ω2ð1þ zlÞ2
Aren0rp: ð39Þ


In order to apply the perturbative approach, we take into
account the circular symmetry of the plasma potential (in
contrast to the SIE gravitational potential), and therefore it
will be convenient to consider the perturbation on the total
projected lensing potential ψ totðθ⃗Þ (i.e., gravitational
potentialþ plasma potential) only due to the deviation
from circularity of the gravitational potential. That is, using
the notation of the previous section we set


FIG. 2. The error on the fitting is less than 0.25% in this range
for a spherically symmetric plasma model with exponential decay
and parameters n0 ¼ 60 cm−3, rp ¼ 1 kpc.
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ψ totðθ⃗Þ ¼ ψgravðθ⃗Þ þ ψplasmaðθ⃗;ωÞ; ð40Þ


ψ0ðθ⃗Þ ¼ ψgravðθ⃗Þjη¼0 þ ψplasmaðθ⃗;ωÞ
¼ θEθ þ ψplasmaðθ⃗;ωÞ ¼ θEθ þ ψ2


ωe
−ð θ


Bθ0
ÞC ; ð41Þ


δψðθ⃗Þ¼ψ totðθ⃗Þ−ψ0ðθÞ¼ θEθð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηcos2ϕ


p
−1Þ: ð42Þ


Finally, from (24), the perturbative solution of the lens
equation can be expressed as


δθ�


¼ jθ⃗Ejð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηcos2ϕ


p
−1Þþδβ10 cosϕþδβ20 sinϕ� ffiffiffiffi


Δ
p


1− ψ2
ω


θ2p
Cζe−ζð1þCðζ−1ÞÞ


;


ð43Þ


where ζ ¼ ð θp
Bθ0


ÞC, and


Δ ¼ δβ2s −
�
δβ20 cosϕ − δβ10 sinϕþ ηjθ⃗Ej sin 2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1 − η cos 2ϕ
p


�2


:


ð44Þ


As we have pointed out, image formation is character-
ized by inequality (26). From this condition we can
analytically analyze, for some particular cases, the regions
in the lens plane where we will have images in terms of
source and lens parameters. The first thing that we can
notice is that a spherical plasma profile will not have an
effect on the angular position of the images since Δ does
not depend on the observation frequency or on the
electronic distribution on the plasma. So the effect of
the plasma in the images position will be completely in the
radial direction.
Let us first consider the case without ellipticity (η ¼ 0)


for three different arrangements of the source position.
For the case in which the source is horizontally aligned in
the plane of the source, that is, for sources located along
the line characterized by δβ10 ≠ 0 and δβ20 ¼ 0, we see
from (44) that the images in the lens plane will be restricted
to regions sin2 ϕ ≤ ðδβs=δβ10Þ2, with 0 ≤ ϕ ≤ 2π. On the
other hand, for vertically-aligned sources, that is, for
sources located along the line δβ10 ¼ 0 and δβ20 ≠ 0,
the images will be restricted to regions where cos2 ϕ ≤
ðδβs=δβ20Þ2, with 0 ≤ ϕ ≤ 2π. Finally, within the non-
ellipticity case we can also obtain an explicit condition
for the images position for sources located along the
diagonal and antidiagonal in the source plane characterized
by δβ10 ¼ �δβ20 ≠ 0. In such case images position in
the lens plane will be characterized by the condition
sin2ðπ=4 ∓ ϕÞ ≤ 1


2
ðδβs=δβ20Þ2, with 0 ≤ ϕ ≤ 2π.


On the other hand, we can also analyze the case where
the ellipticity of the lens is extremely small (η ≪ 1) but
where the source is located at the origin of the source plane,
that is, δβ10 ¼ δβ20 ¼ 0. In this case images formation will
occur in the region of the lens plane characterized by
sin2ð2ϕÞ ≤ ðδβsηθE


Þ2, with 0 ≤ ϕ ≤ 2π.
In Fig. 3 we graphically compare the perturbative


with the numerical method with this particular
plasma model for the following lens configuration. We
consider a gravitational lens described by the parameters:
n0 ¼ 60 cm−3, rp ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3 at an
observation frequency ν ¼ 80 Mhz. The angular radius
of the Einstein ring for this configuration is θE ¼
0.555 arcsec (green line) while θpE ¼ 0.517 arcsec (black
line). The source parameters are (radius and position):
δβs ¼ 0.06θE, δβ10 ¼ 0.08θE, δβ20 ¼ 0.0. As mentioned in
the Introduction, we assume that the lens and the source are
located at zl ¼ 0.04 and zs ¼ 0.1, respectively. In this
figure we show the solution of the lens equation for pure
gravity case in red lines, while in blue lines we show the
solution for the case with plasma. In this particular case we
see that the plasma does not change the multiplicity of


FIG. 3. SIE model with spherical plasma and exponential
decay. n0 ¼ 60 cm−3, rp ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3 at
an observation frequency ν ¼ 80 Mhz. The angular radius
of the Einstein ring for this configuration is θE ¼ 0.555 arcsec
(green line) while θpE ¼ 0.517 arcsec (black line). The source
parameters are (radius and position): δβs ¼ 0.06θE, δβ10 ¼
0, δβ20 ¼ 0.0.
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images or their morphology and, in particular, we can see
that perturbative solution fully coincides with the numerical
one (gray line) for a single iteration. However, we see that
for this configuration, the main effect of the plasma is the
shift of images position in the radial direction towards the
center of the lens. It is worth mentioning that in radio
frequency observations, although they are focused on
certain centered observation frequencies, they typically
have a bandwidth, which can result in blurred images.
However, for example, the LOFAR observatory has a
bandwidth of approximately 3 MHz for observations at
140 MHz or less [58], so the position and shape of the
images will only change slightly. In this work, which aims
to study the main effects of plasma, we will omit this kind
of consideration. Nevertheless, one could use the same
analytical formulas developed here to describe the change
in position and blurring of the images.
Finally, it is important to point out that all numerical


solutions of the lens equation as well as the numerical
computation of critical and caustic curves obtained in
Secs. III, IV, and V were carried out with the multipurpose
open-source gravitational lensing Lenstronomy package
[59], which was suitable modified to include the plasma
models used in this work.


B. Exponential model for an edge-on plasma disk


Although a spherically symmetric electron distribution
in the plasma allows us to show the basic effects of the
plasma’s influence on image formation, it may not be a
sufficiently realistic model, so it is also worth studying
electronic distributions that respect other symmetries. In
this subsection we will consider a electron distribution with
azimuthal symmetry about the z0-coordinate axis. In this
case it is convenient to work with cylindrical coordinates in
such a way that the electron density in the plasma only
depends explicitly on the z0 and rc coordinates. Recall that
the cylindrical radial coordinate rc is defined on the x0y0
plane perpendicular to the lens plane as shown in Fig. 1. We
choose an exponential decay in the radial direction and we
will make two different choices for the behavior of the
electron density in the z0 direction. Thus we will consider
an electron density of the form,


neðrc; z0Þ ¼ n0e−rc=rpfðz0Þ; ð45Þ


with rp a free parameter. This kind of models, more
realistic than those spherically symmetric [see Eq. (35)]
have also been considered in the past, obtaining several
estimates for the average electron density n0 and the
characteristic radius rp from the study of the ion distribu-
tion in the H II regions for various galaxies. In [60] values
of n0 ¼ 500 cm−3 and rp ¼ 8 kpc were obtained for the
galaxy NGC 1232, while in [49] values for n0 were
estimated in the range of ≈½30 − 260� cm−3, based on


the study of more than 600 galaxies from the KMOS and
SAMI surveys.
In this case the electron column density reads,


Neðθ;φÞ ¼
Z


Dls


−Dl


neðrc; z0Þdx0


¼ n0fðz0Þ
Z


Dls


−Dl


e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02þðDlθ cosφÞ2


p
rp dx0


¼ n0rpfðz0Þ
Z


Dls=rp


−Dl=rp


e
−


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̃2þðDl


rp
θ cosφÞ2


q
dx̃; ð46Þ


where x̃ ¼ x0=rp. As this integral cannot be performed
analytically we choose to approximate it by a exponential
function as follows:


Neðθ;φÞ ¼ n0rpfðz0ÞðAe−ðθj cosφj=Bθ0ÞCÞ; ð47Þ


where θ0 ¼ rp=Dl, and A, B, and C are dimensionless
parameters. As we have mentioned in the previous
subsection these parameters depend on the particular
choice of rp. Therefore the plasma potential for this profile
is given by


ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe


−ðθj cosφjBθ0
ÞCfðz0Þ; ð48Þ


where


ψ2
ω ¼ Dls


DsDl


2πc2


ω2ð1þ zlÞ2
Aren0rp: ð49Þ


Unlike of the case considered in the previous subsection,
the resulting plasma potential is not circularly symmetric.
Therefore, unlike the spherically symmetric model we
described above, in this case the plasma potential acts as
a perturbation in the lens equation. In such a way that the
solution of the zero-order lens equation θp given by
Eq. (16) will coincide with the radius of Einstein’s ring,
that is, θp ¼ θE. Therefore, we have the following expres-
sions for the unperturbed and perturbed potentials (con-
sidering again the SIE gravitational potential as a model of
the dark matter halo):


ψ totðθ⃗Þ ¼ ψgravðθ⃗Þ þ ψplasmaðθ⃗;ωÞ; ð50Þ


ψ0ðθ⃗Þ ¼ ψgravðθ⃗Þjη¼0 ¼ θEθ; ð51Þ


δψðθ⃗Þ ¼ ψ totðθ⃗Þ − ψ0ðθÞ
¼ θEθð


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2ϕ


p
− 1Þ þ ψplasmaðθ⃗;ωÞ: ð52Þ


Finally, we will choose two different kinds of decay
along the z0-direction, for both positive and negative values
of this coordinate. First an exponential decay and then a
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Gaussian one. In both cases the idea is to simulate that the
electrons are mostly distributed along the x0y0 plane, that is,
the decay in the z direction must be faster than along the xy
plane. As we did in the previous case, in order to describe
the images in the lens plane, we will express the lens
potential in terms of the coordinates b ¼ Dlθ and φ fitted to
the plane of the lens.


1. Exponential decay in z0-direction


For this model, we consider the following fðzÞ function,


fðz0Þ ¼ e−jz0j=z0 ¼ e−θjsinφj=θz ; ð53Þ


where z0 is a parameter, θz ¼ z0=Dl, while the plasma
potential will be given by


ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe


−ðθj cosφjBθ0
ÞCe−


θjsinφj
θz : ð54Þ


Thus, the solution of the lens equation is given by the
following expression:


δθ� ¼ δβ10 cosφþ δβ20 sinφþ θEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2φ


p
− 1Þ


−
ψ2
ω


θp
e−χ


�
χ þ ðC − 1Þ


�
θp
Bθ0


�
C
jcosφjC


�
�


ffiffiffiffi
Δ


p
;


ð55Þ


where χ ¼ ð θp
Bθ0


ÞCjcosφjC þ θp
θz
jsinφj, and


Δ¼δβ2s−
�
δβ20cosφ−δβ10 sinφþ


ηθE sin2φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηcos2φ


p


þψ2
ω


θp
e−χ


�
C


�
θp
Bθ0


�
C
jcosφjC tanφ−θp


θz
jsinφjcotφ


��
2


:


ð56Þ


In this way we obtain an analytical solution to determine
the position of the images in the lens plane. Although in this
case an analytical study can also be carried out on the
images position for different locations of the source as we
did for the spherical model, the expressions that result from
such analysis do not provide as much clarity as in the
previous case and for this reason we decided directly face a
graphic analysis of the images. What we can say from the
analytical solution is that, unlike the spherically symmetric
case, the effect of the plasma in the images will occur not
only in the radial direction but also in its angular position,
since in this case the function Δ depends on the plasma
parameters.
In Fig. 4 we consider as an example a circular source


with radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE,
δβ20 ¼ 0.0, and parameters n0 ¼ 10 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec
(green line). The fitting parameters are given by
A ¼ 2.00004� 0.00002, B ¼ 1.16� 0.01, C ¼ 1.719�
0.006. In blue lines we see the solution of the lens equation
for the case of pure gravity while in red we plot the
perturbative solution with plasma and compare it with the
numerical integration of the lens equation (gray line) in
order to corroborate the accuracy of the perturbative
approach.


FIG. 4. SIE model for a plasma disk with exponential decay in the z direction with parameters n0 ¼ 10 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec (green line) for a circular source with radius δβs ¼ 0.06θE centered at
δβ10 ¼ 0.08θE, δβ20 ¼ 0.0.
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In this case we plot the images for three different
observation frequencies, from left to right; 350 Mhz,
170 Mhz, and 80 Mhz. For the higher frequency that we
are considering the plasma effect is hardly distinguishable
from the pure gravity case which is the expected behavior.
For a frequency lower than 170Mhz, we see that the images
that are further away from the horizontal axis, which
coincides with the z ¼ 0 axis in the lens plane, tend to
get closer to the center of the lens, a change is also seen in
the angular position of the images with respect to the case
of pure gravity. On the other hand, we see that the images
close to the horizontal axis, which in turn coincides with the
plasma disk, tend to separate, forming for low frequencies
four images instead of the two that appeared in the gravity
pure case. This is because of due to the divergent property
of the plasma lensing, some rays of light deviate above and
others below the horizontal axis. These facts are evidenced
in the last plot for a frequency of 80 Mhz, showing in this
case that plasma can not only interfere with the morphology
of the images but also with their multiplicity.
Finally, we point out that these plots were obtained with


a single iteration of our method and in comparison with the
numerical solution we see that the method is quite accurate
at least for this studied configuration, although as it can be
seen, it is less accurate for lower and lower frequencies.


2. Gaussian-like decay in z0-direction


Let us consider the following fðz0Þ function,


fðz0Þ ¼ e−ðz0=z0Þ2 ¼ e−ðθ sinφ=θzÞ2 ; ð57Þ


where as before, θz ¼ z0=Dl, while the plasma potential
will be given by


ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe


−ðθj cosφjBθ0
ÞCe−ð


θ sinφ
θz


Þ2 : ð58Þ


Thus, the solution of the lens equation is given by the
following expression:


δθ� ¼ δβ10 cosφþ δβ20 sinφþ θEð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cos 2φ


p
− 1Þ


−
ψ2
ω


θp
e−ξ


�
ξþ ðC − 1Þ


�
θp
Bθ0


�
C
jcosφjC


þ θ2p
θ2z


sin2φ


�
�


ffiffiffiffi
Δ


p
; ð59Þ


where ξ ¼ ð θp
Bθ0


ÞCjcosφjC þ θ2p
θ2z
sin2φ, and


Δ ¼ δβ2s −
�
δβ20 cosφ − δβ10 sinφþ ηθE sin 2φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1 − η cos 2φ
p


þ ψ2
ω


θp
e−ξ


�
C


�
θp
Bθ0


�
C
j cosφjC tanφ


− 2
θ2p
θ2z


cosφ sinφ


��
2


: ð60Þ


We see again that the plasma will have effects on both the
radial and angular position of the images in the lens plane
since Δ also depends on the parameters of the plasma.
In Fig. 5 we consider as an example a circular source


with radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE,
δβ20 ¼ 0.0, and parameters n0 ¼ 40 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.730 arcsec
(green line). The fitting parameters in this case are A ¼
2.008� 0.002, B ¼ 1.590� 0.005, C ¼ 1.430� 0.008. In
the blue lines we see the solution of the lens equation for
pure gravity case while in red we plot the perturbative
solution with plasma and compare it with the numerical
integration of the lens equation (gray line) in order to
corroborate the accuracy of the method.


FIG. 5. SIE model for a plasma disk with Gaussian decay in the z direction with parameters n0 ¼ 40 cm−3, rp ¼ 10 kpc, z0 ¼ 1 kpc,
σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.730 arcsec (green line) for a circular source with radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE,
δβ20 ¼ 0.0.
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In this case we plot the images for four different
observation frequencies, from left to right: 320 Mhz,
170 Mhz, 140 Mhz, and 130 Mhz. Again, for high
frequencies the effect of the plasma is quite weak.
Although as we go to lower and lower observation
frequencies we see a similar situation with the previous
model. The images that are close to the horizontal axis
z0 ¼ 0 begin to separate but this time in three images each
of them, while the two images that are further from the
axis z0 ¼ 0 remain practically unchanged with respect to
the pure gravity case because, for this particular model, the
decay along the z0 direction is much faster than in the
previous model and therefore the influence of the plasma in
these images is very slight. It is also for this reason that the
perturbative solution resolves these images quite well and
not so well those close to the z0 ¼ 0 axis. In particular, we
see that for the observation frequency of 130 Mhz, the
perturbative solution would need at least another iteration
to be able to reproduce the images properly.
The effect produced by the plasma in the multiplicity of


images is closely related to the effect produced by the
plasma on the structure of caustic curves, and therefore also
on the structure of critical curves. In Sec. V we will study
the effect of plasma on these kinds of curves, thus showing
what causes this doubling in the images produced by
plasma.


C. Gaussian model: Front view


Let us now consider a plasma disk seen head-on with
Gaussian decay both along and across in the plane
perpendicular to the line of sight. In this case the electron
density will be given as follows:


neðx0; y0; z0Þ ¼ n0e
−y02þz02


r2p e
−x02


z2
0 : ð61Þ


Then, the projected electron density along the line of sight
reads,


Neðy0; z0Þ ¼
Z


Dls


−Dl


neðx0; y0; z0Þdx0


¼ n0e
−y02þz02


r2p


Z
Dls


−Dl


e
−x02


z2
0 dx0


¼ n0z0e
−y02þz2


r2p


Z
Dls=z0


−Dl=z0


e−x̃
2


dx̃; ð62Þ


where x̃ ¼ x=z0. In general, for the situations that we will
be considering, the distances Dl and Dls are of the order of
Mpc (megaparsec) while z0, the characteristic scale of the
plasma disk, is of the order of kpc (kiloparsec). Added to
the fact that the integrand e−x̃


2


decays fast enough, we can
replace the limits of integration Dl=z0 and −Dls=z0 in the
above integral by the asymptotic values ∞ and −∞,
respectively; and thus obtain a good approximation of it.


In addition, this will allow us to solve the integral
analytically. Therefore,


Neðy0; z0Þ ≈ n0z0e
−y02þz02


r2p


Z
∞


−∞
e−x̃


2


dx̃


¼ n0z0e
−y02þz02


r2p
ffiffiffi
π


p
: ð63Þ


Rewriting Ne in terms of the angular coordinate θ using the
relations (31) and (32) we obtain,


NeðθÞ ¼ n0z0e−θ=θ0
ffiffiffi
π


p
; ð64Þ


where θ0 ¼ rp=Dl. Finally the plasma potential will be
given as follows:


ψplasmaðθ⃗;ωÞ ¼ ψ2
ωe−θ=θ0 ; ð65Þ


where


ψ2
ω ¼ Dls


DsDl


2πc2


ω2ð1þ zlÞ2
ren0z0


ffiffiffi
π


p
: ð66Þ


Note that this plasma profile will have a similar effect to the
spherically symmetric plasma profile we consider in (35)
because in both cases the projected electron density Ne is
axially symmetric with respect to the line of sight. Indeed,
we can see the similarity of the plasma potentials if we
compare the Eqs. (65) and (66) with the Eqs. (38) and (39).
For this reason, in the remainder of the article we will not
mention this profile because any analysis that we could
carry out is somehow contained in the analysis carried
out for the spherically symmetric density profile given
by Eq. (35).
Lastly, the effect that a plasma disk (like the one we


are considering) for an arbitrary orientation with respect to
the line of sight, has on image formation was recently
discussed and can be reviewed in [61,62].


IV. COMPARISON FOR SEVERAL ITERATIONS


Because this is a perturbative method, it is expected that
for some situations the solutions obtained through it are too
far from the exact solutions. In this section we will call
exact solutions to those obtained numerically since we can
obtain them with a high degree of precision, even though
they are not strictly so. This situation where the perturbative
method is not precise enough can be reached in various
circumstances, either because the ellipticity of the lens is
very high or because the source is centered too far from the
line of sight or its radius is too large. Or a combination of
them. These situations have been studied both in Alard’s
original work and in subsequent works [39,47,63].
On the other hand, the plasma will also influence the


accuracy of the perturbative method, since for plasma
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potentials without spherical symmetry it will intervene as a
perturbation of the lens potential in pure gravity, such is the
case, for example, of the plasma disk seen from side that we
analyzed in the previous section. But also the spherically
symmetric plasma potentials will have an effect on the
accuracy of the method since, as we can see, the first-order
solution given by (24) must be evaluated in θp which
corresponds with the zero-order solution of the lens
equation that is affected by the plasma. Obviously, the
influence of the plasma on the accuracy of the perturbative
method will be greater as the electron density increases as
well as for lower and lower observation frequencies.
As we have seen, in Sec. II B we introduced an iterative


correction of the perturbative method in order to address
those situations where the perturbative method (with a
single iteration) is not accurate enough to reproduce the
exact solutions.
In Fig. 6 we return to the spherical plasma model for


the following configuration: ν ¼ 80 Mhz, n0 ¼ 300 cm−3,
rp ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec
(green line), θpE ¼ 0.381 arcsec (black line). Source param-
eters (radius and position where it is centered): δβs ¼
0.06θE, δβ10 ¼ 0.5θE, δβ20 ¼ 0.0. The fitting parameters
are:A¼ 2.003�0.002,B ¼ 1.55� 0.01,C ¼ 1.47� 0.01.
In this figure we see the images formation for the first three
iterations of the perturbative method. In gray is the exact
solution (or numerical solution itself). Both for the case
of pure gravity (blue lines) and for the case with plasma
(red lines) we see that two images are formed: on the right
a gravitational arc that is a tangential deformation of the
solution to order zero, and on the left side a radially
deformed image, which we enlarged for better visualization.
The corrections introduced by the second and third iterations
are clearly evident in the enlarged region where we see how
the accuracy of the perturbative method improves substan-
tially, while the correction in the gravitational arc does not
seem to changemuch to the naked eye. In this case the effect


of the plasma is relevant in the accuracy of the method both
because we are working with a relatively low observation
frequency of 80 Mhz and also because we are considering a
relatively high-electron density of 300 cm−1 in comparison
with the cases that we have been analyzing up to now.
On the other hand, we also analyze the iterative correc-


tions of the perturbative method for the plasma disk seen
from the side with Gaussian decay in the z direction. In this
case we repeat the same configuration of parameters that


FIG. 6. SIE model with spherical plasma and exponential decay with pameters ν ¼ 80 Mhz, n0 ¼ 300 cm−3, rp ¼ 1 kpc,
σc ¼ 180 km=s, η ¼ 0.3, θE ¼ 0.555 arcsec (green line), θpE ¼ 0.381 arcsec (black line) for a circular source with radius δβs ¼
0.06θE centered at δβ10 ¼ 0.5θE, δβ20 ¼ 0.0. Comparison for the first three iterations.


FIG. 7. SIE model for a plasma disk with Gaussian decay in z
direction, repeating the configuration of Fig. 5 with observation
frequency ν ¼ 140 Mhz. Third iteration.
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we used in Fig. 5 and in particular we are going to
concentrate on the last two subfigures on the right that
correspond to observation frequencies of 140 Mhz and
130Mhz, respectively. In both cases we will see how a third
iteration of the perturbative method produces significant
corrections of the perturbative method. These corrections
can be seen in Fig. 7 for the 140 Mhz frequency, and Fig. 8
for the 130 Mhz frequency. Higher-order iterations do not
show significant corrections.
In this way we graphically show for some particular


examples how the iterative corrections of the perturbative
method are useful to reproduce the position of the images
more faithfully. We highlight that in all cases corrections of
order four or higher were not necessary. On the other hand,
although it is possible to show how the analytical solutions
are for the different iterations, these expressions are quite
cumbersome and lack any illustrative character, and for this
reason we decided to carry out only a graphical analysis
of them.


V. CRITICAL AND CAUSTIC CURVES


As we saw in Sec. III, for certain plasma profiles, in
particular for a plasma disk seen from the side with both
exponential and Gaussian decay in perpendicular direction
to the disk, the plasma has a clear effect on the multiplicity
of images (see Figs. 4 and 5). Far from being the goal of
this section to establish a general criterion or necessary


conditions that allow us to predict the number of images
given a certain plasma profile, we are going to analyze the
effect of plasma on the critical and caustic curves associated
with Fig. 5, which corresponds to the model with Gaussian
decay in the z direction. The plasma will have a similar
effect on the critical and caustic curves associated with
Fig. 4 although in this case, since the lens potential is not
differentiable at z ¼ 0, they must be carefully calculated
near this area.
The critical curves, which are those curves defined from


the condition J ¼ 0 in the lens plane, where J ¼ det ∂β⃗
∂θ⃗


is


the determinant of the Jacobian matrix, are of significant
importance because they are related to some of the most
notorious effects of gravitational lensing theory; image
magnification and multiplicity of them (the latter, charac-
teristic of strong gravitational lenses). Due to the magni-
fication effect, the image of an infinitesimally small source
located at position θ⃗ will magnify by a factor jμðθ⃗Þjwhere μ
is known as magnification (or point magnification to be
precise) and is defined by μ ¼ 1


J. In this way, we see that the
critical curves are those regions in the lens plane where the
magnification of the images is infinite. This divergence
indicates that the geometric optics approach fails in this
region. However, when dealing in practice with extended
sources, the magnification is calculated by averaging the
point magnification on the source and, in turn, weighing it
and normalizing it by its surface brightness. For a detailed
discussion of this topic we refer to [2].
Let us assume, for example, that we have a spherical


gravitational potential ψ0 and a small perturbation δψ
associated with the plasma medium. In this situation, in
the perturbative approach, using (17) we have


J¼1


θ


��
1−


∂
2ðψ0þδψÞ


∂θ2


��
θ−


∂ðψ0þδψÞ
∂θ


−
1


θ


∂
2ðψ0þδψÞ


∂ϕ2


�


−
1


θ


�
1


θ


∂ðψ0þδψÞ
∂ϕ


−
∂
2ðψ0þδψÞ
∂θ∂ϕ


�
2
�����


θ¼θEþδθ


: ð67Þ


By doing a linear approximation in δθ and δψ and using


∂ψ0


∂θ


����
θ¼θE


¼ θE; ð68Þ


∂ψ0


∂ϕ
¼ 0; ð69Þ


1


θ þ δθ
¼ 1


θ
−
δθ


θ2
þOðδθ2Þ; ð70Þ


we finally obtain


FIG. 8. SIE model for a plasma disk with Gaussian decay in z
direction, repeating the configuration of Fig. 5 with observation
frequency ν ¼ 130 Mhz. Third iteration.
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J ¼ 1


θ


�
1 −


∂
2ψ0


∂θ2


��
δθ


�
1 −


∂
2ψ0


∂θ2


�
−
∂δψ


∂θ
−
1


θ


∂
2δψ


∂ϕ2


�����
θ¼θE


:


ð71Þ


From this relation it follows that if we consider that the
plasma effect introduced in δψ has circular symmetry, the
images can be demagnified with respect to the gravitational
magnification for overdense plasma regions (where
∂δψ
∂θ < 0). This case was analyzed in [36], finding that the
ratio between the magnifications of different images does
not change too much with respect to the case of considering
only gravity, concluding therefore that the existence of
plasma cannot account for the flux ratio anomaly. The
opposite effect is produced in under density regions. We
refer to [24,38,64,65] for different situations that can be
presented (see also [61] for a numerical study of the relative
magnification between the different images). However, for
noncircular perturbative potentials, the effect of the plasma
medium on the magnification of images could have a
completely different behavior, depending strongly on the
angular dependence in both θ and ϕ of the projected
potential δψ . Note also that from the expression for the
jacobian J, one infers that generically the totalmagnification
is nonlinear. Therefore, in those cases, we cannot assign
plasma and gravitational magnification values to each of the
individual images.
In the following, instead of calculating the critical curves


through the approximate formula Eq. (71) of J, we will
show the graphs through numerical calculations without
extra approximations.
In Fig. 9 we see the critical curves associated with


Fig. 5 for various observation frequencies. In green we
plot the Einstein ring while in blue and red the critical
curves for the pure gravity case and for the case with
plasma, respectively. We can see that even for frequencies
of 320 MHz, the influence of the plasma is notorious and
that its main influence, at least in this profile that we are
considering, occurs along the horizontal axis defined by
z ¼ 0 in the lens plane, because it coincides with the
plasma disk seen from the side. Although such curves
could also be obtained from a perturbative approach, we
decided to numerically study both the critical and caustic
curves in order to avoid any bias that a perturbative
solution might introduce.
On the other hand, as we previously mentioned, the


critical curves are also related to the multiplicity of images,
although in an indirect way since the evaluation of the lens
equation along these curves gives us what is known as
caustic curves, and the relative position of the source with
respect to these new curves is what will give us information
about the multiplicity of the images. In other words, those
sources that generate images located along critical curves in
the lens plane are located along caustic curves in the source
plane. A simple example of this is given in the case of an
spherically symmetric lens and a point source, the latter


aligned with the line of sight. The image produced in this
case is an Einstein ring which in turn coincides with a
critical curve, and therefore the caustic curve will be in this
case the point where the source is located.


FIG. 9. Critical curves associated to the SIEmodel of Fig. 5, for a
plasma diskwithGaussian decay in the z directionwith parameters
n0 ¼ 40 cm−3, rp ¼ 10 kpc, z0 ¼ 1 kpc, σc ¼ 180 km=s,
η ¼ 0.3, θE ¼ 0.730 arcsec (green line) for a circular source with
radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE, δβ20 ¼ 0.0. Blue
and red lines correspond to critical curves in the pure gravity case
and in the plasma case, respectively.
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In Fig. 10 we can see the caustic curves associated with
Fig. 5. In blue we see the caustic curves for the pure gravity
case in the form of an astroid while in red the caustic curves
for the case with plasma are shown for different observation
frequencies. In black we can see the relative position of the


source with respect to these curves. The effect that the
plasma has for lower frequencies is notable, which is
correlated with the images that are formed in the lens
plane. For an observation frequency of 320Mhz we see that
although the effect of the plasma on the caustic curves is
appreciable, the images change very little because the
source is relatively far from them. However, for lower
and lower frequencies we see substantial effects in the
images formed along the axis z ¼ 0 in the lens plane, a
situation that is consistent with an increasing approxima-
tion between the source and the caustic curves. For an
observation frequency of 130 Mhz we can even see that the
plasma produces a change in the multiplicity of the images
that is perfectly distinguishable, coinciding with an overlap
between the source and the caustic curves in multiple
places. In particular, at a frequency of 130 MHz, the source
is located within the left-hand cusp, which appears near the
center, without having fully entered the interior of the right-
hand cusp nearby. This explains why the image inside the
Einstein ring is split into three images on the positive
abscissa axis in the rightmost figure of Fig. 5, in accordance
with the general theory of image formation near caustic


FIG. 10. Caustic curves associated to the SIE model
of Fig. 5, for a plasma disk with Gaussian decay in the z
direction with parameters n0 ¼ 40 cm−3, rp ¼ 10 kpc,
z0 ¼ 1 kpc, σc ¼ 180 km=s, η ¼ 0.3 for a circular source with
radius δβs ¼ 0.06θE centered at δβ10 ¼ 0.08θE, δβ20 ¼ 0.0. Blue
and red lines correspond to caustic curves in the pure gravity case
and in the plasma case, respectively. In addition the position of
the source is shown in black line.


FIG. 11. Images for different positions of the source with
respect to the caustic curves for the same configuration of 5 with
observation frequency ν ¼ 130 Mhz.
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curves (see [66] and references therein). However, the same
is not observed in the image on the left, which still retains
the shape of an elongated arc (also in agreement with the
general theory). It should be noted that, since we are
dealing with singular gravitational potentials, the odd
number images theorem does not apply to the situations
studied here.
Finally, in Fig. 11 we see simultaneously the images that


are formed (subfigure below) for different relative positions
of the source with respect to the caustic curves (subfigure
above). In this way, it is possible to better appreciate the
importance of caustic curves in the morphology and
multiplicity of images in the lens plane.


VI. A 3D SPHEROIDAL MODEL


A. The model


It is our main interest in this section to put in perspective
the two-dimensional simple lens models discussed previ-
ously by comparing them with enhanced models coming
from a volumetric distributions. There are a couple reasons
that motivate this further analysis, let us mention for
example that even though these 2D models are useful
for fitting and quantifying many astrophysical systems it is
often the case that spheroidal symmetric distributions
do not project to surface mass densities with ellipsoidal
symmetry as in the case of SIEs. Another usual feature of
elliptical models is that they are based on two-dimensional
isodensity or equipotential curves with ellipses having the
same eccentricity, instead in some case it could be desirable
to have at hand models that tends to be spherically
symmetric in the limit or large distance from the center
of the distribution; this is not the case for the models
previously studied. For instance, the spheroidal symmetries
appear naturally when one considers generalized mass
distribution in Newtonian gravity which leads for example
to the so-called third Newton theorem [67].
Below we present the description of static and spheroidal


lenses with an approach that has some differences with
respect to the usual treatments. Here, we will prefer to deal
with a geometrical model describing the spacetime asso-
ciated to the lens and built an spheroidal symmetric model
based on the standard oblate spheroidal coordinates [68],
where the spheroids of symmetry are confocal; this means
that when the radial coordinate associated to spheroids
growth its eccentricity ϵ decreases. So, below we present a
geometry that has oblate symmetry and becomes a direct
generalization of the well-known singular isothermal pro-
file in spherical symmetry to the spheroidal case. The
model is determined by the metric


ds2 ¼
�
r
r0


�
4σ2


dt2 −
�


Σ
r2 þ r2μ


þ 2MðrÞ
r


�
dr2


− Σdθ2 − ðr2 þ r2μÞsin2ðθÞdϕ2; ð72Þ


where


MðrÞ ¼ 2σ2r; ð73Þ


and r0 and rμ are fixed parameters. Note that σ here does
not have any unit (σ ≡ σc=c). If rμ ¼ 0 the spacetime
becomes spherically symmetric and would have a mass-
energy density of isothermal form given by


ρspheðrÞ ¼
1


2πr2
σ2


1þ 4σ2
≃


σ2


2πr2
; ð74Þ


while its spacelike matter components would be PrðrÞ ¼ 0


and PθðrÞ ¼ σ2ρspheðrÞ (and so PθðrÞ ≪ ρspheðrÞ since
typically σ2 ≪ 1). That is, when rμ ¼ 0 the above metric
is a peculiar singular isothermal profile; its mass-energy
density is only determined by the mass functionMðrÞwhile
the timelike component of the metric ensures a model with
negligible pressures and vanishing stresses. The behavior
of the solution in the limit rμ ¼ 0 was in fact one of the
criteria adopted to find the line element (72) since in this
case, this lens will display similar phenomenology than
the spherical analogs of the SIE model of the previous
sections. Instead, if σ ¼ 0 one obtains the flat line element
in the standard oblate-spheroidal coordinates. The eccen-
tricity of the oblate spheroids of r ¼ constant is given by


ϵ2 ¼ r2μ
r2þr2μ


. As we previously mentioned, this becomes a


subtle difference with respect to the SIE model where
the ellipses of symmetry have a constant eccentricity,
namely ϵ2SIE ¼ 2η


1þη ¼ constant.
Then, in order to compare both models a suitable choice


of the parameter rμ has to be made to fit a SIE characterized
by η ¼ constant.
For rμ ≠ 0, the model presented in this section is a kind


of natural generalization to oblate spheroidal symmetry of
the singular isothermal profile, in particular it is interesting
to note that even the stresses given by the component Trθ of
the energy momentum tensor are present, they become
negligible.
The following sections show the behavior of this lensing


in both weak and strong regimes when a plasma is present
or absent.


B. Weak-lensing optical scalars


1. Achromatic lensing


In this subsection we will present the calculation of the
optical scalars associated to the model of the previous
section. The methods used in this section differ from those
introduced in Sec. II; to properly account the full geometry
of the lens we will base our computation on the framework
presented in references [11,69,70]. This framework allows
to deal with the full contributions coming from the
curvature of the lens, in particular it takes into account
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for the possible spacelike contributions of the energy
momentum tensor which are usually neglected in most
methods based on linearized gravity [2]. We will use the
following expression valid when the cosmological back-
ground is explicitly taken into account [70]:


κ ¼ ð1 − κcÞκL þ κc; ð75Þ


γ ¼ ð1 − κcÞγL; ð76Þ


where now the cosmological contribution κc to the expan-
sion is given by


κc ¼ 1 −
DAðλÞ


λ
; ð77Þ


and where the lens intrinsic contribution to the expansion
and the shear are given by


κL ¼ DAl
DAls


DAs


Z
λs


λo


Φ00dλ; ð78Þ


γL ¼ DAl
DAls


DAs


Z
λs


λo


Ψ0dλ; ð79Þ


where λ andDA denotes the geometric affine distances and
angular diameter distances respectively, and subindices o
and s refers to values at the observer and the source
respectively. The quantities Φ00 ¼ − 1


2
Rablalb and Ψ0 ¼


Cabcdlamblcmd are the Ricci curvature scalar and
Weyl curvature scalars of the GHP formalism [71] with
respect to a null tetrad ðla; ma; m̄a; naÞ adapted to the
path of the photon under consideration. In the weak-
lensing regime only first order effects on the curvature are
relevant and so in this case the null geodesic and the
null tetrad are taken to be those corresponding to unper-
turbed null geodesic of the background (as described for
example in [69]). Under such approximation, the limits
of the integral range from λo to λs which are the values of
the affine parameters at the observer and at the source
respectively.
For first order effects on the curvature as those present in


the weak-lensing regime, In particular, for first-order effects
on the curvature, the null geodesic as well as the null tetrad
are taken to be those corresponding to unperturbed null
geodesic of the background (as described for example in
[69]) and the limits of the integral range from λo to λs which
are the values of the affine parameters at the observer and at
the source respectively.


2. Chromatic lensing


When a static plasma is present on the static geometric
lens, similar expressions to the previous subsubsection
hold; in such case, the curvature scalars are those
associated to the Gordon-like optical metric introduced


in [11]. That metric has the property that the projected
spacelike orbits of massless particles on the surfaces t ¼
constant coincides with those of the spacetime metric;
and, since deflection angles are essentially deduced from
the spacelike orbits, the expressions for the bending angle
and optical scalar in a medium filled with a plasma are
identical to those of the spacetime metric. Then, one can
show that similar expressions to those of Eqs. (75), (76),
(78), and (79) remains valid if one replace the curvature
scalar Φ00 and Ψ0 of the spacetime metric by its analogs
computed in the Gordon-like optical metric; this is
Φ00 → Φ00G


and Ψ0 → Ψ0G
, where the subindex G stems


for Gordon-like line element. The associated Gordon-like
optical metric to Eq. (72) for a static plasma with
spheroidal symmetry is


ds2G ¼ 1


nðrÞ2
�
r
r0


�
4σ2


dt2 −
�


Σ
r2 þ r2μ


þ 2MðrÞ
r


�
dr2


− Σdθ2 − ðr2 þ r2μÞsin2ðθÞdϕ2; ð80Þ


where nðrÞ denotes the refractive index of the ionized
medium.


3. Including a plasma model: The refractive index


For our spheroidal symmetric lenses we will use a
plasma distribution that is consistent with that symmetry,
for this purpose we will consider a plasma density of the
form


neðrÞ ¼ npe
− r
rp ; ð81Þ


with rp and np both constants. Here it is important to recall
that ω is the angular frequency that one would measure at
the location of the plasma, so that if we consider an
observing frequency ν then we will have


ω ¼ 2πνð1þ zlÞffiffiffiffiffi
gtt


p ; ð82Þ


with gtt the timelike component of the line element (72).


4. Numerical results


With the aim to illustrate the typical behavior of the
oblate spheroidal geometry we show below the result
of a numerical computation of the optical scalar in
Figs. 12 and 13, and the magnification of a lens with such
geometry in Fig. 14. Left panels of these figures correspond
to pure gravity while right panels to the spheroidal
geometry with a plasma. The parameter of the geometry
in this example are rμ ¼ 0.7rE, σc ¼ 180 km s−1; where
the radial scale rE corresponds to the Einstein’s radius of a
spherically symmetric singular isothermal profile, this is
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rE ¼ 4πσ2c
DlDls
Ds


. For the plasma we choose np ¼ 60 cm−3


and rp ¼ 10 kpc. We have used the affine distances
λl ¼ 169.55 Mpc and λs ¼ 395.164 Mpc; which, when
expressed as angular diameter distances are DAl


¼
169.528 Mpc and DAs


¼ 394.856 Mpc respectively on
the flat (k ¼ 0) Friedman-Robertson-Walker model that
we have chosen (see introductory section).
The two figures, Figs. 12 and 13, show the projection of


κ, γ in the plane ðx; zÞ of the lens together with their level
sets. They exhibit a nontrivial structure near of the foci of
the spheroids associated with the geometry and only far


from the foci the level set resemble at some extent to
elliptical shapes. Figure 14 show the position of the critical
curves (sharp-yellow contour) that would correspond to
deformations of the Einstein ring of the case rμ ¼ 0.
The examples correspond to the simplest observational


setting were a distant observer is located at θ ¼ π
2
and where


the spheroidal geometry appear to her/him not tilted. The
case of general orientations can be handled by and
appropriated rotation of the spheroids local frame.
The numerical integration of Eqs. (75) and (76) in all the


situation was accomplished by the use of a Gauss-Legendre


FIG. 12. Convergence for a geometry with rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. The plasma model is show next to the
pure gravity case and has been chosen such that: νo ¼ 180 MHz, np ¼ 60 cm−3, rp ¼ 10 kpc. Red dots in the figures indicates the
position of the foci that corresponds to the ellipse generating the oblate ellipsoid.


FIG. 13. Shear for a geometry with rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc plus a plasma model with the following
parameters: νo ¼ 180 MHz, np ¼ 60 cm−3, rp ¼ 10 kpc. Red dots in the figures indicates the position of the foci that corresponds to
the ellipse generating the oblate ellipsoid.
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quadrature of order seven while the computation of the
curvature scalar was done with the use of xAct suite [72].


C. Relation with elliptical models


In order to attempt a comparison between the geometric
model and the SIE model, an appropriated choice of
parameters has to be made. For example, one could try
to fit critical curves of one model to the other or to associate
the elliptical shape of the SIE potential with an appropriated
projected ellipsoids among others possibilities. For this
study we combine this two criteria to fit similarities
between features of both models. We note first that the
equipotential curves of ψgrav ¼ k,


θk ¼
k


θE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η cosð2ϕÞp ; ð83Þ


define ellipses with semimajor axis a along θ1 and semi-
minor axis b along θ2, in particular one has that


1 − η ¼ k2


θ2Ea
2
; ð84Þ


1þ η ¼ k2


θ2Eb
2
: ð85Þ


Dividing both expressions and rearranging terms to isolate
η one obtains


η ¼ a2 − b2


a2 þ b2
; ð86Þ


which gives a relation between the parameter η only
in terms of the principal axis of the ellipses. Let us
note that if one takes k ¼ χθ2E then θk0 ¼ χθE=


ffiffiffiffiffiffiffiffiffiffiffi
1 − η


p
and θkπ=2 ¼ χθE=


ffiffiffiffiffiffiffiffiffiffiffi
1þ η


p
. Similarly than before, one can see


that


η ¼
θ2k0 − θ2kπ=2
θ2k0 þ θ2kπ=2


: ð87Þ


On the other hand, in the spheroidal geometry one has
that a2 ¼ r2 þ r2μ and b2 ¼ r2, so that one has


r2μ ¼ a2 − b2 ¼ D2
l ðθ2k0 − θ2kπ=2Þ


¼ χ2D2
l θ


2
E


2η


1 − η2
≡ χ2r2E


2η


1 − η2
; ð88Þ


where we have defined


rE ≡DlθE ¼ 4π
σ2c
c2


DlDls


Ds
: ð89Þ


Preliminary comparison of the critical curves of both
models suggests to consider 1


χ ¼ 1.16. In terms of the
relation η ¼ ηðrμÞ one obtains for example ηð0.3rEÞ ¼
0.06033, ηð0.4rEÞ ¼ 0.10643, ηð0.5rEÞ ¼ 0.16369,
ηð0.6rEÞ ¼ 0.22945, ηð0.7rEÞ ¼ 0.30000.


FIG. 14. Magnification factor for a geometry with rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. The plasma model is show next
to the pure gravity case and has been chosen such that: νo ¼ 180 MHz, np ¼ 60 cm−3, rp ¼ 10 kpc. Red dots in the figures indicates
the position of the foci that corresponds to the ellipse generating the oblate ellipsoid. For reference with the spherically symmetric case
(rμ ¼ 0) we have also included in the form of a white ring the Einstein ring for the case of pure gravity.
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D. Strong lensing of a disklike oblate
spheroidal geometry


Let us consider now large distortions of background
sources due to our geometric model; such a strong-lensing
effect will be associated to sources near to caustic points. It
is then necessary to determine the region of caustics for the
model and afterwards to look at the arcs produced by a
small circular source near to the caustic. We realize that in
the full geometric treatment we do not have, in general, an
explicit lens equation in terms of bending angles, so that the
image generation as well as the location of caustics have to
be performed by means of the ray tracing of the null
geodesics of the geometry (72) in the case of pure gravity,
or null geodesics of Eq. (80) if we take into account the
chromatic effect of a static plasma. The numerical solution
requires the integration of the exact null deviation geodesic
equations and null geodesic equations in order to determine
the caustics and images that we present below.


1. Numerical implementation


Our ray-tracing code uses a classical Runge-Kutta
integrator pair of order 7–8 from the suite RKSuite [73]
with high accuracy to find the solution to the path of the
photons from the observer position. The code additionally
computes the solution of the geodesic deviation equation
and therefore allows us to compute the optical scalars along
the central null geodesics of a thin bundle. In particular, in
order to asses the position of caustics and critical curves
we integrate the equations to find those points where the
magnification factor becomes divergent. The search of the
angular directions that corresponds to points comprising
caustic curves or the points corresponding to the source is
implemented through iterative approximations. In the sky
of the observer one starts with two initial guesses taken
along a radial direction in the plane perpendicular to the
line of sight and in a next step we run the midpoint
algorithm to correct the initial geodesics to the closer ones
to the specified target, the position of the source or the
criteria that the geodesic reach a divergence beyond certain
threshold. For instance, in our examples below, the typical
size of the images have angular size of order 0.1–1 arcsec;
for them we have taken a error tolerance in the determi-
nation smaller than 10−4 arcsec. In the case of caustic, we
have required that geodesics having magnifications factor
greater than 106 should be considered as effectively passing
through a caustic point.


2. Results


We present below the results of calculations in two
different cases: the first one corresponds to a model with
less separation between foci than the previous one dis-
cussed in the weak-lensing analysis (Sec. VI B 4); we have
taken rμ ¼ 0.3rE in this case while keeping the other lens
parameters and distances unchanged. In order to visualize


large distortions like arcs we also placed a circular source at
ðβx; βzÞ ¼ ð0.2θE; 0Þ arcsec, with radius rsource of size
rsource ¼ 0.1 arcsec. The results in are shown in Figs. 15
and 16 for the case of pure gravity. It is observed in the
former one, the formation of large arcs at both side of the
source; one of them lies outside of the region delimited by
the critical curve while the other is inside. The presence of
two arcs is associated with the fact that the source intersect
the caustic; this can be appreciated in Fig. 16 where it is


FIG. 15. Pure gravity: lensed and unlensed images of a circular
source intersecting the caustic region of the model characterized
by rμ ¼ 0.3rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. Blue marks
indicate those points of the source employed to build the images
of the arcs; in red the small crosses indicate the observed position
of those points in the source. The black points on the horizontal
axis indicates the angular position of the Einstein ring in the
spherical case.


FIG. 16. Pure gravity: critical and caustic curves for an oblate
spheroidal model with a small deviation from spherical sym-
metry. The geometry is characterized by rμ ¼ 0.3rE, σc ¼
180 km s−1 and r0 ¼ 0.32 Mpc. Blue marks shown on the caustic
are in correspondence with the red marks in the critical curve. The
black points on the horizontal axis indicates the angular position
of the Einstein ring in the spherical case.
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shown the appearance of the critical curve and the caustic
giving origin to it. It is worthwhile to mention that such
behavior is in full agreement with the expected images that
one would obtain with the well-known 2D models.
We also consider for completeness, the model of


Sec. VI B 4 having rμ ¼ 0.7rE. The images corresponding


to the circular source considered in this section are shown
in Fig. 18 and its position with respect to the caustic
(diamond shape) is shown in Fig. 17. In both figures we
have included the results when a plasma Sec. VI B 3 is also
present. In order to highlight the differences, in this case the
plasma frequency was taken to be ν ¼ 80 Mhz, while the
remaining parameters np and rp remaining unchanged.
Two notable changes are observed in this case with respect
to the previous one; the presence of four images with arc
shapes that appear closer to the center than those of the pure
gravity case, and the shrink of the critical curve. As clearly
noticed from Fig. 18, the cause explaining the number of
images should be ascribed to the position of the source in
the interior of the caustic region, in agreement with similar
results with 2D models. Finally, it is perhaps interesting to
note that the shape of the critical curve in the pure gravity
case fits the critical curve of Fig. 14 very well despite both
being computed with different methods.


VII. CONCLUSIONS


In the first part of this work, after a generalization of the
Alard perturbative approach to solve the lens equations and
making use of simple models for the ISM plasma around
galaxies, we have shown how to include its effects on the
photon propagation in the radio-frequency band to study
the formation of lensed images in the strong-lensing regime
in an analytical perturbative way. We have described the
position, shape and number of images for circular sources
which are lensed by galaxies in two simple orientations,
frontal and edge view. More general orientations are
discussed in [61,62]. For the particular cases of plasma
profiles that we have used, we have shown how the number
of images can increase as the observation frequency
approaches the characteristic frequency of the plasma,
resulting in the number of images being sensitive to the
plasma profile and to the position of the source in the region
of the caustic curve. Of course, in a real galaxy, the
electronic distribution of plasma in the interstellar medium
should be much more complex than in the models studied
here. More sophisticated models should include the plasma
concentration along arms in spiral galaxies, the bulk, disk,
and also the plasma environment around satellite galaxies,
etc. As previously discussed, these kind of models already
exist in the literature [48–54,74]. However, the simple
models studied here, allow us to give an idea of what kind
of situations one could find when analyzing lensed systems
in the low radio-frequency regime, such as those expected
to be observed in LOFARþ nenuFAR observatory
[74,75]. It is worth noting that subarcsecond-resolution
observations of bright radio sources, even at 30 MHz, have
recently become possible thanks to the LOFAR observatory
[76]. Additionaly, not only the position of the images will
be affected by the presence of the plasma, but also the time
delay between them, which in addition to the well-known
geometric and Shapiro effects will now also depend on the


FIG. 17. Critical and caustic curves for the oblate spheroidal
model with and without a plasma. The geometry is characterized
by rμ ¼ 0.7rE, σc ¼ 180 km s−1 and r0 ¼ 0.32 Mpc. The plasma
has been chosen such that νo ¼ 80 MHz, np ¼ 60 cm−3,
rp ¼ 1 kpc. The central diamond shapes in cyan and red
correspond to the caustics for the cases of pure gravity and
plasma respectively. The correspondence between the points on
the caustic (blue marks) and the points on the critical curve (red
marks) is shown for the pure gravity case. Black dots in the αx
axis are placed as reference for the position of the Einstein angle
in the spherical case.


FIG. 18. Lensed and unlensed images of a circular source
inside of the caustic region shown in the previous figure, for
the model the geometric model rμ ¼ 0.7rE, σc ¼ 180 km s−1 and
r0 ¼ 0.32 Mpc. The images of the circular source (cyan) are
drawn in green for the pure gravity case. Red curves correspond
to images in the case of a plasma with νo ¼ 80 MHz,
np ¼ 60 cm−3, rp ¼ 1 kpc.
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plasma medium, which affects the group velocity of
propagation of electromagnetic waves [24,36,61,77].
These and other studies will be developed in future works.
An interesting question is how to reconstruct the


lensing properties from image observations when a
gravity þ plasma environment is taken into account. In
such situations, parameters associated with the plasma
potential model must be added to those associated with
the gravitational potential. In cases where gravitational
lensing can be observed in the optical regime (or where
plasma effects are negligible), the gravitational potential
can be separately reconstructed using conventional tech-
niques (see, for example, [78] and references therein).
However, if the source is variable, estimates of the
dispersion measurement and plasma potential can be
obtained by studying variations in the time delay between
different images, which is chromatically dependent on the
presence of plasma [79]. In cases where differences in
the arrival time of signals from the images cannot be
measured, the procedure becomes more complicated,
but it can still be performed if the lensed system can
be observed at three nearby frequencies. For more details
on this method, interested readers are referred to Wagner
and Er [79].
Additionally, with the intention to further study more


general models for the lens distribution, we have also
introduced a full geometrical model which is a natural
generalization of spherically symmetric lenses with a


singular isothermal profile. The metric proposed in this
case resemble a disklike oblate geometry that far from the
center approaches to a spherically symmetric one. Despite
the differences between this kind of models and those of
Sec. III that do not allow for a direct comparison, we have
shown that a reasonable fitting criteria can be attempted in
order to study some qualitative features appearing in both
lens models; such as the shape of critical curves and the
observed number of images that are obtained depending on
the position of source with respect to caustics. While two-
dimensional models are certainly useful for studying these
types of problems, it is important to note that our consid-
eration of the three-dimensional spheroidal model repre-
sents a significant step toward constructing more realistic
models. Furthermore, in Sec. VI B, we have taken into
account the influence of the cosmological framework on
these systems, further reinforcing the realism of our
models. A further analysis on the properties of these kind
of model will be presented elsewhere.
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Abstract
We present the first explicit global conformal diagram of Kerr spacetime and
discuss some implications on the causal structure. For this construction we
use a new double null coordinate system for Kerr spacetime, which we have
recently presented. These null coordinates are smooth everywhere and are
naturally adapted to the horizons and to the null infinities. In this setting there
naturally appears a family of spheres that are parameterized by rs, which are the
intersections of both null coordinates, and rs can be thought of as the extension
of the tortoise coordinate for the Kerr spacetime.


Keywords: Kerr, conformal diagram, double null coordinates


(Some figures may appear in colour only in the online journal)


1. Introduction


The formation of a black hole is normally thought of as the result of the collapse of a previous
system. All observed compact objects have angular momentum; so that it is expected that any
possible collapse to a black hole state will include some final angular momentum. Then, since
the stationary axisymetric vacuum solution of the Hilbert–Einstein equations with angular
momentum is the Kerr geometry [1]; it is natural to think of this metric as one of the most
important in the study of general relativity.


Very recently these geometries have also acquired observational importance, since the direct
observation of gravitational waves [2, 3]. Most of the observations correspond to binary black
hole systems, whose final state is supposed to be represented by a remaining black hole with
angular momentum. For this reason the Kerr metric becomes of relevance in this framework;
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since perturbations of this geometry could be used to describe the late time behavior of those
systems.


The recent presentation of the first image ever generated [4] of a black hole is also related
to this geometry. At the time of writing the Event Horizon Telescope (EHT) Collaboration has
presented a second image, in this case of the supermassive black hole in the center of our own
galaxy [5]. The models employed by the EHT Collaboration to create the image make use of
this geometry, as also do other approaches to construct these type of images [6].


To have a deep physical understanding of a spacetime, it is crucial to know its causal struc-
ture. The use of null coordinates together with conformal diagrams was very useful tools for
these purposes. They help to understand the nature of black holes horizons and are widely used
in a variety of studies.


In spherically symmetric spacetimes, it is natural to consider diagrams in which each point
corresponds to one of the spheres of symmetries, leading to the usual causal diagrams of the
spacetime, as for example those presented in [7]. For the Schwarzschild case the use of the
tortoise coordinate given by r∗ = r+ 2m ln( r


2m − 1) was useful.
For a black hole with angular momentum, the situation is much more delicate. In the sixties


Carter [8] was able to study in detail the ‘complete analytic extension of the symmetry axis of
Kerr spacetime’, and he presented the now celebrated conformal diagram at the symmetry axis
of this spacetime. These type of diagrams are also reproduced in classic textbooks [9]. At the
end of his article Carter conjectured that it was ‘probable that the basic topological properties
of the 4-dimensional manifold’ were essentially the same. Yet, before the present article, there
were no publications of an explicit construction of global conformal diagrams of a black hole
with angular momentum. In many articles and presentations, Carter diagrams are used as if the
Carter conjecture where true without presenting any argument for its support. The conformal
diagram we are presenting in this article is then a useful tool to tackle questions as the above
Carter conjecture; which we explore later in this work.


Two dimensional conformal, and therefore causal, diagrams are a very useful tool for visu-
alizing the structure of the spacetime. Could one extend the usual two dimensional conformal
diagrams of Schwarzschild geometry, based on Kruskal coordinates, to the case of a black
hole with angular momentum? Yes, fortunately, we have recently constructed a pair of null
coordinates that allows us to extend those techniques to the Kerr geometry.


The term ‘conformal diagram’ can be given slightly different meanings; in particular it
is rather easy to construct a conformal diagram out of a static 2-dimensional Lorentzian
spacetime [10], since one can readily find a pair of null functions. Then in particular one
could compactify the spacetime to obtain a conformal diagram of it. But in our case we use
the denomination ‘conformal diagram’ in a 4-dimensional sense; that is, one is hoping that
generic points in the 4-dimensional spacetime can be represented in the conformal diagram. In
order to fix the discussion we define: global conformal diagrams of a 4-dimensional spacetime
as 2-dimensional graphs, in which lines at 45◦ represent constant null functions, and generic
points of the spacetime can be mapped through a mathematical function to the 2-dimensional
graphs. It is then customary to use compactifications so that infinities can also be drawn in
these diagrams. Typical examples of diagrams that embody this definition are the graphs (i)
and (ii) of figure 24 of Hawking and Ellis textbook [11]. Instead, the graphs shown in the same
reference in figure 28, for Kerr spacetime, do not classify as ‘global conformal diagrams’ since
they refer to specific points along the axis of symmetry. In this work we provide for the first
time an explicit construction of global conformal diagrams of Kerr spacetime.


A natural question that arises is whether the conformal diagrams that we present in this
article provide any advantage for the analysis of the images of the observed black holes,
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the answer to which needs for some explanation. To begin with, the standard representa-
tion one has in mind as the source for the astrophysical system that generates the images
that EHT Collaboration have published, is that surrounding material close to the black holes
emits electromagnetic radiation that is captured by the radiotelescopes. That is, all the phys-
ical observed system is thought to be located outside the event horizon. From this point of
view then our contribution would not add to the known structure, outside the horizon, of black
holes with angular momentum. A second representation that one could consider is to include
the possibility that the astrophysical black hole has also a past event horizon, and that null
geodesics could reach us from past regions of this horizon. In this case, our construction could
help in analyzing the behavior of those geodesics, by providing the opportunity to depict them
in our diagrams. Nonetheless, the general belief is that astrophysical black holes are always
in the presence of surrounding material that would complicate this picture in several ways;
inducing us to take the first standard representation, considered above, as the realistic one.


Note that one of the great benefits of the construction presented here is that now one can eas-
ily make any computation across the event horizon and the Cauchy horizon, either for particles
or fields. This contributes on the physical studies in a broad spectrum of topics and results.


We use the standard notation for regions of type I, II and III to correspond respectively to
the situations [8] r> r+, r+ > r> r− and r− > r.


We will show below that the noncausal zone in region III cannot be represented in global
conformal diagrams. We can only draw its boundary. Throughout this work we assume the
standard situation a2 < m2; where the geometric parameters are defined below in the metric.


In what followswe present the basic tools that are used to construct themost general explicit
conformal diagram of a black hole with angular momentum. In section 2 we review the basic
geometry and definition of a pair of null coordinates, that are adapted to the horizons. The
null coordinates in regions II and III are presented in section 3. In section 4 we recall the
conformal diagram at the axis of symmetry. With our construction, we are able in section 5
to present a numerically generated graph of three timelike curves in a conformal diagram. In
section 6 we present graphs that depict the boundary of the noncausal region in Kerr spacetime.
The conformal diagram of regions I, II and III is discussed in section 7 . An ending section is
devoted to final comments.


2. The Kerr geometry


2.1. The basic pair of null coordinates


The Kerr metric in terms of Boyer–Lindquist [12] coordinates can be expressed as:


ds2 = (1−Φ)dt2 + 2Φasin2(θ)dtdϕ− Σ


∆
dr2 −Σdθ2


−
(
r2 + a2 +Φa2 sin2(θ)


)
sin2(θ)dϕ2; (1)


with inverse: (
∂


∂s


)2


=
Υ


Σ∆


(
∂


∂t


)2


+
4amr
Σ∆


(
∂


∂t


)(
∂


∂ϕ


)
− ∆


Σ


(
∂


∂r


)2


− 1
Σ


(
∂


∂θ


)2


− ∆− a2 sin2(θ)


Σ∆sin2(θ)


(
∂


∂ϕ


)2


, (2)


where


Σ= r2 + a2 cos2(θ), ∆= r2 + a2 − 2mr, Υ=
(
r2 + a2


)2
−∆a2 sin2(θ), Φ=


2mr
Σ


, (3)
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and where m denotes de mass while the angular momentum of the black holes is given by
J= am. In their work, Boyer and Lindquist were able to study the analytic extensions of the
Kerr geometry.


Let us note for future reference that:


gϕϕ =−
(
r2 + a2 +Φa2 sin2(θ)


)
sin2(θ) =−Υ


Σ
sin2(θ), (4)


that is, this component of the metric is proportional to Υ; which we will study below.
To build the outgoing congruence we make use of the Carter constant K on each geodesic,


which in our construction becomes a function of the coordinates (r,θ). But often, it is useful
to refer instead to a related scalar that we call k(r,θ) and is defined by:


K(r,θ) = a2 sin(θ)2 + k2(r,θ). (5)


The details for the construction of the null congruence and the definition of the null coordinates
are given in [13]; we here just recall some of the most important equations. These auxiliary
scalars must satisfy the equation:√


(r2 + a2)2 −K∆
∂K
∂r


± |h
√
K−


(
asin(θ)


)2 ∂K
∂θ


= 0, (6)


with boundary condition:


lim
r→∞


K= a2 sin(θ∞)2, (7)


where θ∞ is the value of the coordinate θ at future null infinity; or equivalently:


∂k
∂ξ


=
a2 sin(θ)cos(θ)+ k ∂k


∂θ√
(1+ ξ2a2)2 − ξ4∆


(
a2 sin(θ)2 + k2


) , (8)


where


ξ =
1
r
, (9)


with boundary condition


lim
ξ→0


k= 0, (10)


and we are assuming k> 0 in the northern hemisphere [13].
In our previous work [13] we have presented a pair of null functions that are smooth every-


where and therefore can be used as coordinates for the spacetime. Moreover, they are adapted
to the horizons, as we will review here. These null functions were constructed in terms of par-
ticular congruences of null geodesics. We defined the outgoing congruence to be orthogonal to
the center of mass sections [14, 15] at future null infinity. This construction has the advantage
that it can be generalized to spacetimes, which are not exactly Kerr, but instead a perturbed
spacetime that is decaying to a remaining black hole with angular momentum.


One can express the integral form of these functions in several ways [13], and we choose:


u(t,r,θ,ϕ) = t− r−


(
2mr+
r+ − r−


ln


(
r
r+


− 1


)
− 2mr−
r+ − r−


ln


(
r
r−


− 1


))
−
ˆ θ


0
k(r,θ ′) dθ ′. (11)


And for the other function we choose:


v(t,r,θ,ϕ) = t+ r+


(
2mr+
r+ − r−


ln


(
r
r+


− 1


)
− 2mr−
r+ − r−


ln


(
r
r−


− 1


))
+


ˆ θ


0
k(r,θ ′) dθ ′. (12)
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Starting from the metric in Boyer–Lindquist coordinates (1), and expressing it in terms of the center
of mass null coordinates, one obtains:


dt=
dv+ du


2
, (13)


dr=


[
(dv− du)


2
− kdθ


]
∆√
R
. (14)


where R= (r2 + a2)2 −K∆; from which, the metric is expressed as:


ds2 =
1
4


(
1− 2mr


Σ
− Σ∆


R


)(
du2 + dv2


)
+


1
2


(
1− 2mr


Σ
+


Σ∆


R


)
dudv


+ dv


(
2amrsin2(θ)


Σ
dϕ+


Σ∆


R kdθ


)
+ du


(
2amrsin2(θ)


Σ
dϕ− Σ∆


R kdθ


)
− ΥΣ


R dθ2 − Υ


Σ
sin2(θ) dϕ2. (15)


Similarly, the inverse metric can be expressed as:(
∂


∂s


)2


= 4
Υ


Σ∆


(
∂


∂u


)(
∂


∂v


)
− 1


Σ


(
∂


∂θ


)2


+ 2


(
∂


∂u


)[
2amr
Σ∆


(
∂


∂ϕ


)
+
k
Σ


(
∂


∂θ


)]
+ 2


(
∂


∂v


)[
2amr
Σ∆


(
∂


∂ϕ


)
− k


Σ


(
∂


∂θ


)]
− ∆− a2 sin2(θ)


Σ∆sin2(θ)


(
∂


∂ϕ


)2


. (16)


It is easy to verify that ℓa ≡ (du)a and na ≡ (dv)a are null forms, which is consistent with our
definition. We occasionally use Latin letters in this article to denote abstract indices.


2.2. Regular coordinates at the horizon


From observing the variation of the derivative of the Boyer–Lindquist coordinate ϕ with respect to the
affine parameter [13] λ, one finds that ϕ has a divergent behavior as the horizon is approached. In order
to avoid this bad behavior we choose to define:


dφ±pf = dϕ−±pf
a
∆
dr, (17)


which has an integral expression given by:


φ±pf = ϕ−±pf
a


2
√
m2 − a2


ln


∣∣∣∣ r− r+
r− r−


∣∣∣∣; (18)


where we are using the notation (±pf =+) for the choice p and (±pf =−) for the choice f. That is, φ+


is well behaved as one approaches the past horizon Hp, and φ− is well behaved as one approaches the
future horizon Hf .


It can be proved [13] that the function U=−exp(−κu) is well behaved across the future horizon
Hf when: κ= κ+, where


κ+ =
(r+ − r−)
2(r2+ + a2)


=


√
m2 − a2


2mr+
, (19)


which is customary referred to as the surface gravity of the black hole. In particular one can see that,
near the horizon one hasU∝∆; where the proportionality factors are smooth functions on the horizon.
In order to have a double null system that is smooth across the outer past event horizon we also define
the null function V in a similar way; so that we have:


U=−exp(−κ+u), (20)
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and


V= exp(κ+v). (21)


Up to now,we have been studying the asymptotic behavior approaching the horizon from the outside
region where λ < λ+. In the inner region, U> 0 and one should use the relation:


U= exp(κ+uII), (22)


where uII is the analogous inner version of the null coordinate u in the outer region.
Then, the metric becomes:


ds2 =
1
4


(
1− 2mr


Σ
− Υa2 sin2(θ)+Σ2∆


ΣR −
±pf 4mra2 sin2(θ)


Σ
√
R


)
1


κ2U2 dU
2


+
1
4


(
1− 2mr


Σ
− Υa2 sin2(θ)+Σ2∆


ΣR ±pf
4mra2 sin2(θ)


Σ
√
R


)
1


κ2V2 dV
2


− 1
2


(
1− 2mr


Σ
+


Υa2 sin2(θ)+Σ2∆


ΣR


)
1


κ2UV
dUdV


+


[(
Υa2sin2(θ)+∆Σ2)


ΣR ±pf
2mra2sin2(θ)


Σ
√
R


]
k
κU


dUdθ


+


[(
Υa2sin2(θ)+∆Σ2)


ΣR −
±pf 2mra2sin2(θ)


Σ
√
R


]
k
κV


dVdθ


−
(
2amrsin2(θ)


Σ
±pf


Υasin2(θ)


Σ
√
R


)
1
κU


dUdφ


+


(
2amrsin2(θ)


Σ
−±pf


Υasin2(θ)


Σ
√
R


)
1
κV


dVdφ


−


[
Σ+


k2
(
Υa2 sin2(θ)+Σ2∆


)
ΣR


]
dθ2


±pf
2Υasin2(θ)


Σ
√
R


k dθ dφ− Υ


Σ
sin2(θ) dφ2, (23)


where one has to consider κ= κ+ and we are using the new angular coordinate φ.
The inverse metric can be expressed as:(


∂


∂s


)2


= − 4κ2 Υ


Σ∆
UV


(
∂


∂U


)(
∂


∂V


)
− 2κk


Σ


[
U


(
∂


∂U


)
+V


(
∂


∂V


)](
∂


∂θ


)
− 2κaU


Σ∆


(
2mr−±pf


√
R
)( ∂


∂U


)(
∂


∂φ


)
+


2κaV
Σ∆


(
2mr±pf


√
R
)


×
(
∂


∂V


)(
∂


∂φ


)
− 1


Σ


(
∂


∂θ


)2


− 1


Σsin2(θ)


(
∂


∂φ


)2


, (24)


where κ= κ+.
The determinant of the metric is given by:


g=−∆2Σ2 sin(θ)2


4κ4RU2V2 . (25)


The future outer horizon Hf is reached following the incoming null geodesic congruence while the
past outer horizon Hp is reached following the outgoing null geodesic congruence but to the past. The
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behavior ofU and V near the horizon can be seen from the expression of the product of both functions,
since one has:


UV=
− e2κ+(r+


´ θ
0
k(r,θ ′)dθ ′) (r−)


r−
r+


(r+)(r− r−)
r++r−


r+


∆. (26)


From the definition of both functions, one can see that U≈∆ at the future outer horizon Hf and
V≈∆ at the past outer horizon Hp.


Let us notice that each one-form dta and dra (normal to a surface t=constant, r=constant respect-
ively) changes its causal character between region I and II, as we can see from their norms:


gabdtadtb =
Υ


Σ∆
, (27)


gabdradrb =−∆


Σ
. (28)


In region I where ∆> 0, we have that dta is timelike and dra spacelike. In region II where ∆< 0,
we have that dta changes to spacelike and dra changes to timelike. In region III where∆> 0, we have
a similar situation as in region I.


One can see that something similar happens with:


(drs)a =


√
R
∆


dra+ kdθa, (29)


which norm is:


gab (drs)a (drs)b =− Υ


Σ∆
, (30)


so that drs is spacelike in region I where ∆> 0, and becomes temporal in region II where ∆< 0. In
order to keep the same causal meaning of the null functions u,v, we need to define new ones. There
are several reasons that induce us to define the new coordinate rs. The function rs is the analog to the
tortoise coordinate in Schwarzschild spacetime. These can be seen, as it already appears in the integral
form of the coordinates u and v, in equations (11) and (12). It has the meaning of a function that is
constant on the 2-surfaces that are the intersections of the hypersurfaces u=constant and v=constant.
These 2-surfaces are topologically spheres, and are the natural closed surfaces that appear in our con-
struction of the double null coordinate system. The coordinate rs also has the convenient property that
is constant in each point of the conformal diagrams we are presenting in this article. Note that, as we
have explained in [13], rs can explicitly be given in the exterior region by:


rs(r,θ) =r+
2mr+
r+ − r−


ln


(
r
r+


− 1


)
− 2mr−
r+ − r−


ln


(
r
r−


− 1


)
+


ˆ θ


0
k(r,θ ′) dθ ′. (31)


This equation shows the relation between rs with the standard Boyer–Lindquist coordinates (r,θ).
If we call rKS the Kerr–Schild radial coordinate, that is, r2KS = x2KS + y2KS + z2KS; then, we have to recall
that r4 − (r2KS − a2)r2 − a2z2KS = 0. Therefore, one could replace above the appearance of r with the
corresponding functional relation r(rKS,zKS), to find the relation of rs in terms of the radial Kerr–Schild
coordinate. To have a qualitative comparison of the surfaces rs =const., r=const. and rKS =const. we
have made the graph shown in figure 1; where we can see that for these parameters, the rs =const. is
located between the other two. We have emphasized the Kerr coordinate3 r with the notation r= rKerr
in this graph. Whenever necessary, to make an explicit numerical calculation, we assume m= 1 and
a= 0.8. We have chosen the value of r to triple the mass, which taking into account that for our choice
of parameters r+ = 1.6 m, one can see that it is smaller than double the value of r+.


3 Although r is normally understood as the radial Boyer–Lindquist coordinate, it already appeared in the original
paper [16] of Kerr.
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Figure 1. Comparison of different radial functions maintained constant, with respect to
Kerr-Shild coordinates.


Before continuing with the other regions let us also note that dv= du+ 2drs, so that, for example,
the Kerr metric in the (u,rs,θ,ϕ) coordinate system, can be obtained from (15) by this replacement;
namely


ds2 = (1−Φ)du2 + 2(1−Φ)dudrs+ 2asin2(θ)Φdudϕ+


(
1−Φ− Σ∆


R


)
dr2s + 2k


Σ∆


R drs dθ


+ 2asin2(θ)Φdrs dϕ−
ΥΣ


R dθ2 −
(
r2 + a2 + a2 sin2(θ)Φ


)
sin2(θ) dϕ2. (32)


It is probably worthwhile to point out that the grsrs component of the metric is not identical to
zero; while if one were to write the Schwarzschild metric in the corresponding coordinates (u,rT,θ,ϕ),
where rT is the tortoise coordinate, one would obtain grTrT = 0. The point is that in Schwarzschild case,
demanding du= 0, dθ = 0 and dϕ= 0, characterizes outgoing null geodesics; but in Kerr spacetime
this is not the case, so that an increment of rs, maintaining the other three coordinates constant, provokes
a motion on the null hypersurface u=constant, but not along a null direction.


3. Null coordinates in regions II and III


To understand how to define smooth functions at the Cauchy horizons, let us study the behavior of the
null functions in a neighborhood of CR and of CL (See figure 2). We will begin with the study of vII in
a neighborhood of CR, along the null geodesics contained in the congruence uII =constant.


One can see that in region II dtII plays the role of a spacelike one form, while drs has the role of a
timelike one form that grows towards r− in the causal diagram 2. So that the relations between the null
functions uII and vII with the interior Boyer–Lindquist coordinate system (tII,r,θ,ϕII) is given by:


duII =− dtII+ drs =−dtII+


√
R
∆


dr+ kdθ, (33)


where we are using drs as given by (29) and:


dvII =dtII+ drs = dtII+


√
R
∆


dr+ kdθ, (34)
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so that in the causal (uII,vII) diagram of region II, one also has that uII increases to the upper left and
vII increases to the upper right.


It is useful to remark that in order to obtain the metric in the {uII,vII,θ,ϕ} coordinate system one
has to replace in (15): (du→−duII) and (dv→ dvII).


We can now proceed with the main purpose of this part, which is to define a regular function Ṽ in
the vicinity of the Cauchy horizon CR (r= r−). Let us start by studying the behavior of vII along the
null geodesics contained in the congruence uII =constant, which is determined by:


v̇II =2


√
R
∆


ṙ+ 2k θ̇ =−2
R
∆Σ


− 2
k2


Σ
. (35)


Note that in this congruence one has that ṙ=−
√
R
Σ


and θ̇ =− k
Σ
.


To see the behavior of the first term as a function of the affine parameter λ, let us recall that at the
Cauchy horizon CR one has −Σ(r−,θ)dr√


R(r−)
= dλ; so that, approaching the Cauchy horizon CR in region


II, to first order one has:


∆=(r− r+)(r− r−) =


√
R(r−)


Σ(r−,θ)
(λ−λ−)(r+ − r−)+O((λ−λ−)


2), (36)


with λ < λ−. Then, the integration of the divergent term of (35), close to the Cauchy horizon CR, is:


−2
(r2− + a2)2


∆Σ(r−,θ)
dλ=−2


(r2− + a2)2


(r+ − r−)
√


R(r−)


dλ
(λ−λ−)


=−2
(r2− + a2)
(r+ − r−)


dλ
(λ−λ−)


=− dλ
κ−(λ−λ−)


, (37)


where


κ− =
(r+ − r−)


2
√


R(r−)
=


(r+ − r−)
2(r2− + a2)


=


√
m2 − a2


2mr−
, (38)


which we call κ− because of its analogy with κ+. This means that in this asymptotic region one has
v≊ −1


κ−
ln(λ− −λ). So that the function that cures this logarithmic behavior must be an exponential;


for this reason we define:


Ṽ=−exp(−κ− vII), (39)


which by construction, satisfies, as one approaches the Cauchy horizon CR, along the null geodesics
contained in the null congruence U=constant, that:


dṼ≈ dλ. (40)


Similarly, we also define:


Ũ=−exp(−κ− uII), (41)


which, for analogous reasons, is a regular null function close the Cauchy horizon CL.
The behavior of uII,vII near r= r− is:


lim
r→r−,v=v0


uII =∞, (42)


lim
r→r−,u=u0


vII =∞, (43)


which is consistent with our definitions (39) and (41).
It is important to remark that with these definitions we obtain the same metric functional expression


as (23) and (24), with the only difference being that in region II, one has to choose (κ= κ−), (±pf =−)
and take an opposite sign in gUIIθ , gUIIφ, gVIIθ and gVIIφ.
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Note that to cover regions I and II with null functions that are smooth across Hf and CR, one can
use the set (U, Ṽ); which we plan to employ below.


We can define:


Ũcompact = arctan(Ũ), (44)


Ṽcompact = arctan(Ṽ), (45)


and extend the definitions of ψ and ξ, as used by Carter [8], accordingly. In this way we can explicitly
construct a conformal diagram where each point represents a fixed value of the pair (Ũcompact, Ṽcompact)


or equivalently, of the pair (Ũ, Ṽ). It is clear that this technique can be performed in each region.
In region III, each one-form dta and dra, recovers the same causal character as of region I, but with


the difference that r and rs decreases to the right. Therefore, we can use a similar definition:


duIII = dtIII + drs, (46)


dvIII = dtIII − drs. (47)


Then, to build the null tetrad we take ℓIII = duIII, nIII = Σ∆
2Υ dvIII, completing the tetrad in an ana-


logous way, as we did previously; namely, ma
III is tangent to the surfaces rs = constant, and the usual


null tetrad metric conditions are satisfied. In this case, for each surface rs =constant, we also obtain
the same functional expressions of Extrinsic and Gaussian curvature.


It is useful to remark that in order to obtain the metric in the {uIII,vIII,θ,ϕ} coordinate system one
has to replace in (15): (du→ dvIII) and (dv→ duIII).


Note also that the functional expressions of Ũ and Ṽ are good coordinates for region III.


4. Conformal diagram at the axis of symmetry


Let us note that at the axis of symmetry, the right hand side of equation (8) is zero, so that k= 0 and
K= 0 along the axis. Therefore, the calculation of the null functions at the axis is trivial.


Once one has the appropriate definition of the extended coordinates, the causal diagram of figure 2
is straightforward to construct; following the ideas already presented in [8].


In region I, we can take Carter functions ψ = Ucompact +Vcompact and ξ = Vcompact −Ucompact, where
we can define:


Ucompact = arctan(U), (48)


Vcompact = arctan(V). (49)


The conformal diagram shown in figure 2 is constructed by taking (ξ,ψ) as horizontal and vertical
coordinates respectively.


To extend the diagram to future and past regions, one has to deal with the analog coordinates to U
and V so that they are smooth across the corresponding horizons, as we have described.


In the following sections we present conformal diagrams that have meaning away from the axis of
symmetry.


Since the construction of conformal diagrams is rather difficult, some authors have tried other tech-
niques, as in [17]; where they have introduced projection diagrams.
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Figure 2. Carter conformal diagram of Kerr spacetime at the axis of symmetry. One can
extend in a natural way this diagram to future and past regions.


5. Global conformal diagram with timelike trajectories


5.1. On global conformal diagrams


We can see then that one of the great benefits of having constructed a double null coordinate system in
Kerr spacetime is that one can now describe its causal structure. Recall that up to now, the conformal
diagrams were well understood only at the axis, namely for θ= 0 or θ = π; as it is depicted in diagram
(a) of figure 1 in [8], or in figure 27 of page 312 in [9], or in figure 2. However, our construction allows
us to extend the validity of those causal diagrams, where now each point represents the intersection
of the null coordinates. For instance, the intersection of the null hypersurface u=const. with the null
hypersurface v=const., determines a particular topological sphere with rs = constant. On these sur-
faces, the radial coordinate r has a small range of variability, but the angular coordinates θ and φ vary
across their whole respective range of [0,π] and [0,2π]. This is why we emphasize the word global in
our conformal diagrams. As an example of the typical small variations of the coordinate r along the
surfaces rs = constant we can observe for instance figure 1. There, one can notice that when reaching
the Equatorial plane, along the rs = constant surface, the r function is a little bit smaller than 3, which
is the value at the axis; and in fact numerically we can calculate that it has the value r= 2.960 at the
Equatorial plane. Using the coordinates U and V that allow us to cross the future horizon H= Hf,
one has the same property; so that we can give general validity to the causal diagrams using these
type of null coordinates. In other words, we can construct conformal diagrams as the one shown in
figure 2, where each point corresponds to particular values of each of the null coordinates. Alternat-
ively, each point represents a topological sphere which could be at one of the horizons with r= r+
or r−, or the sphere has rs =constant; recalling that rs diverges at the horizons, where lim


r→r+
rs =−∞
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and lim
r→r−


rs =∞. The set rs =constant, is a 2-dimensional spacelike surface family(in region I), that


corresponds to a well behaved function r(θ) in terms of Boyer–Lindquist coordinates.
Note that the regular function on CR is Ṽ; which therefore can also be used in region III. Then,


since we would like to draw curves that go from region I to region II and also to region III, it is more
convenient to use for all these three regions the definitions:


ψ = Ucompact + Ṽcompact = arctan(U)+ arctan(Ṽ), (50)


and


ξ = Ṽcompact −Ucompact = arctan(Ṽ)− arctan(U). (51)


Then, in this case, the future horizon Hf is characterized by the condition U= 0, or equivalently
the line ψ = ξ, from −π


2 to 0. While the boundary CR is characterized by the line ψ =−ξ, again for ξ
in the range [−π


2 ,0]. The origin is thus set at i+.


5.2. Computing the plot of timelike trajectories in a conformal diagram


In order to show the utility of having an explicit construction of a conformal of Kerr spacetime we
compute here the plot of three timelike curves in such diagram.


The three timelike curves are defined in the following way. The starting point is to consider the
timelike geodesic equations for the coordinates (Ṽ,r,θ,φ); which are a set of first order differential
equations. This set of equations involves the requirement that the curve be timelike. Then, although we
start from the geodesic equations, we transform them in order to generate timelike curves which are
not geodesics. In the equation involving Ṽ, the knowledge of the function K is required; but instead of
this, we use K0 =


(r2+a2)a2 sin(θ)2


(r2+a2 sin(θ)2) , which is the limit of the function K when the mass of the spacetime
is taken to be very small. This provides then for a recipe to calculate a timelike curve which for m ̸= 0
is not a geodesic. Although we require in one of the equations that these curves are timelike, they cease
to be geodesic, because for geodesics one should use K instead of K0, that we employ. The reason to
calculate these timelike trajectories instead of the geodesics, is to facilitate the numerical calculations,
since to attain a reasonable precision in the trajectories would require high accuracy in the calculation
of K along each point used by method of integration as those of Runge–Kutta type. We also compute
U numerically.


Orbit 1 is calculated with Lz = 0.2, E= 1.2 and Kg = δga2 cos(θc)2 +(Easin(θc)− Lz/sin(θc))2


with θc = π
6 and δg = 1 for a timelike curve. Orbit 2 uses the constants above but with E= 0.5. While


orbit 3 is like orbit 2 but with Lz = 0.7. All curves pass through the point: Ṽ= tan(−π
4 ), U= 0, θ = π


4
and φ= 0.


The graph in figure 3 shows the numerically calculated drawing of these three curves in the con-
formal diagram.


We would like to emphasize that the design of these three timelike curves was chosen just because
of numerical convenience. But even so, the calculations demanded some efforts on the fourth order
Runge–Kutta integrators. Thus we tried to extend the range as much as possible. The technique to
select them was to fix a point in the U= 0 surface, that is at the future event horizon; and then to pick
up three initial conditions covering a fast ‘inward’ infall, orbit 1, a normal timelike behavior, orbit 2,
and a fast ‘outward’ also in fall, orbit 3. We call ‘inward’ a motion with increasing U behavior, and
‘outward’ a motion with increasing Ṽ behavior; which in the graphs are approximate motions to the
left and to the right respectively. It can be seen in figure 3 that the timelike trajectory o3 touches the
Cauchy horizon CR; and it actually enters into region III, but far away from the problematic noncausal
zone inside region III. We have tried several initial conditions until we found one whose trajectory
enters region III. One should notice that the spacetime is smooth across CR and that geodesics and
smooth timelike curves, as o3, can cross the Cauchy horizon.
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Figure 3. Conformal diagram showing three timelike curves.We use colors in this graph
to denote horizons and infinities. The blue lines denote future and past null infinites.
The yellow lines denote the Cauchy horizons, where r= r−. The gray lines denote the
horizons, where r= r+. The three timelike curves are drawn in cyan, magenta and green.


It is immaterial which are the three timelike curves; what is important is that one can use a numerical
program to draw the graph of these curves in the conformal diagram. This is only possible if one has
the explicit construction of the conformal diagram, as we present here.


6. The extraordinary noncausal region IIIb


6.1. On the sign of Υ


In his original article Kerr [16] presented the metric also in what is now known as the Kerr–Schild [18]
form. Then Boyer and Lindquist [12] used this form of the metric to express their Boyer–Lindquist
coordinates; from which it is clear that increasing the value of the angular coordinate ϕ in 2π implies
traveling around in a closed loop in the manifold. Since the sign of gϕ,ϕ is determined by Υ, in the
regions where Υ is negative, one has closed timelike curves, and the causal character of dt and drs
changes. All of this occurs inside region III; where we were using (46) and (47), and more specifically
in a sector within the zone r< 0.


The regionwhere gϕ,ϕ becomes positive, equivalentlyΥ change its sign, is depicted in the following
figures 4 and 5.


Let us observe that


uIII − vIII = 2rs =
1
κ+


ln(U)− 1
κ−


ln
(
Ṽ
)
= ln


(
U


1
κ+


)
− ln


(
Ṽ


1
κ−


)
= ln


(
U


1
κ+


Ṽ
1


κ−


)
, (52)


or


U= Ṽ
κ+
κ− exp(2κ+ rs). (53)


One extreme of the noncausal region is at r= 0 and θ = π
2 ; that is, at the ring singularity. Then,


performing the numeric integration of
´ π


2
0 k(r= 0,θ)dθ we obtain rs0 =


´ π
2


0 k(r= 0,θ)dθ = 0.66078;
so that one has:
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Figure 4. Three dimensional graph of the sign of gϕ,ϕ.


Figure 5. R01(r, δ ∗π) for δ= 0.5, 0.4, 0.3 and 0.29; where it shows negative values as
function of r.
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U0 = Ṽ
κ+
κ− exp(2κ+ rs0). (54)


The other extreme of the noncausal regions is for approximately r1 =−0.9, and θ = π
2 ; so that


rs1 = r1 +
2mr+
r+−r−


ln(1− r1
r+


)− 2mr−
r+−r−


ln(1− r1
r−


)+
´ π


2
0 k(r1,θ)dθ. However, at the moment we do not


have a numeric calculation of k for negative values of r, so we estimate
´ π


2
0 k(r1,θ)dθ with the above


value of rs0. In this way, for the other extreme one has:


U1 = Ṽ
κ+
κ− exp(2κ+ rs1), (55)


with the approximate value rs1 = 0.1651.
So, the natural question is, can one define a continuous uIIIa and vIIIa null coordinates inside the


noncausal region IIIb? In order to construct the null functions in some region, we need to have the
function K or k in that region. It happens that the partial differential equation that K or k must satisfy,
has problems whenΥ becomes negative, because as we show below the argument in the left square root
of equation (6) becomes negative. More concretely, the null geodesic congruence that we are using,
ceases to be integrable. That is, we cannot carry out the construction inside the noncausal region.
Moreover, any such construction that relies on a null congruence coming from null infinity, will have
the same fate. In other words, these type of constructions are not able to provide a continuous set of
null coordinates that enter the noncausal region. In fact, since it is a noncausal region, it would be
unnatural to think that there exists a mechanism such that this type of construction can be carried out
at all.


All these means that the interior of the noncausal region IIIb cannot be represented in a global
conformal diagram of Kerr spacetime.


This point has not been mentioned previously in the literature.


6.2. On the construction of the null congruence


In the previous subsection we have indicated that due to the nature of the calculation of the function
K, one can deduce that our construction for a double null coordinate system cannot be extended to
the noncausal region IIIb. In this subsection instead we will concentrate on the problems related to
the construction of the null geodesic congruence, that we employ in our construction. That is, we will
consider each geodesic at a time, where K is constant along each of them.


The existence of a noncausal region poses the question of what is the extent in the spacetime where
one can construct the reference null geodesic congruence.


First of all, it is worthwhile to recall that Carter has shown in [19] that in extending the manifold
to the future and to the past, one repeatedly encounters regions of type I, II and III, in an arrangement
shown in figure 2. In particular all regions of type III have the same geometrical properties. For this
reason, in this subsection we will concentrate on the region of type III which can be reached with past
directed null geodesics emanating from future plus infinity I+.


To study the behavior of the null geodesics let us concentrate in the r and θ motion, which are the
coordinates used by Kerr [16] and Boyer and Lindquist [12].


The r motion is given by:


Σ2ṙ2 =
[
E(r2 + a2)− aLz


]2
−K∆≡RLzE, (56)


where we have taken the opportunity to define RLzE. The θ motion is given by:


Σ2θ̇2 = K−
[
Easin(θ)− Lz


sin(θ)


]2
≡ΘLzE, (57)
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which invites us also to define the function ΘLzE as above. For our congruence we need to consider
Lz = 0, and without loss of generality, we take E= 1. Under these conditions we have that the right
hand side of (56) becomes:


R01 = (r2 + a2)2 −K∆=Υ−∆Θ01, (58)


since


Θ01 = K− a2 sin(θ)2. (59)


Let us note that due to the nature of the θ motion equation, one must have Θ01 ⩾ 0, and that in the
interior of region III one has∆> 0. In (58) we have rearrange terms so thatΥ appears explicitly. Since
Υ becomes negative in the noncausal region IIIb, one can see that R01 turns negative in this region,
and therefore indicates that a geodesic coming from outside this zone will not be able to enter into it.


Let us see this in more detail by studying the behavior of (58) withK= a2 sin(θ∞)2, which is shown
in the next graph. That is, let us study the null geodesics that we use to build the double null coordinate
system; which start at future null infinity, where θ∞ is the value of coordinate θ at this asymptotic
boundary. To facilitate the presentation we use in the graph the notation θ∞ = δπ, that is we express
θ∞ in terms of the more convenient parameter δ.


We would like to emphasize that the choice E= 1 is just done for simplicity and does not represent
a restriction, in particular, one can easily see that in the general case, K ′ = K/E2 satisfies equation (6).
It can be seen that for δ⋄ ≈ 0.289< δ < 0.5 one has that R01 shows negative values for some r’s that
are negative and greater than−1. At this point it is worthwhile to recall that Carter [19] has shown that
only the geodesics that strike the singularity are incomplete. Therefore, a null geodesic that reaches
a point where R01 becomes negative, as for example is the case for the null geodesic starting with
δ= 0.4, will not stop there, but will reverse its r motion. That is, in the previous motion one had ṙ< 0,
and after the point in which R01 = 0, one will have ṙ> 0. In other words, one therefore deduces that
for the chosen geometrical parameters m and a, the null geodesics coming from future null infinity,
with values of δ in the range shown in the graph, will invert the r motion to greater values; with the
exception of the critical value of δ⋄ where R01 shows a double root. This situation is analog to the
discussion in classical mechanics of the motion of one particle with conserved quantities; where for
fixed δ, the radial potential energy would be−R01(r, δπ) and the mechanical energy is zero. Note that
there is an equatorial symmetry with respect to this effect.


Also, it is observed that for δ ⪅ 0.289, the null geodesics in our congruence, coming from future
null infinity will continue to the asymptotic region r→−∞; so that one can construct our congruence
in the neighborhood of the axis of symmetry. Let us note that the extreme θ⋄ = δ⋄π has been estimated
for the case m= 1 and a= 0.8. These limiting values can be calculated solving a cubic equation for r⋄


and then calculating θ⋄; which are deduced from R= 0 and dR
dr = 0.


It should be noticed that for the geodesics with parameter δ in the range δ⋄ ⩽ δ ⩽ 1− δ⋄, they will
cease to form a hypersurface after the turning points, because from there they will inevitably cross
other geodesics in the congruence; which can also be checked by noticing that the spin coefficient ρ,
which is related to the divergence of the congruence, blows up when R goes to zero [13]. Of course
the special case is δ= 0.5, which are the geodesics that reach the singularity.


In summary, our construction for a double null coordinate system cannot be extended to region IIIb.
Therefore, the noncausal region cannot be represented in the conformal diagrams.


6.3. Calculation of the function k


We have been able to integrate k, for all values of θ, up to r= 0, as it is shown in the next graph.
In figure 6 it is shown the graph of the numerical integration of k from r=∞ up to r= 10−16;


which indicates a smooth behavior of the function for positive r.
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Figure 6. Numerical solution of k in terms of the coordinates (ξ,θ).


7. General conformal diagram of regions I, II and III


The existence of the extraordinary noncausal zone b in region III poses a number of questions on the
physical reality of the whole region III. As Carter has pointed out [19], one can have closed timelike
lines that extend to any part of region III. It is outside the scope of this work to review the studies on
the global causal structure of Kerr spacetime; instead, we would like to present a useful tool that helps
to carry out those studies.


An explicit conformal diagram of the three regions I, II and III is presented here.
Region IIIa is the zone of region III where r− ⩾ r⩾ 0.
We have noticed before that the noncausal region IIIb cannot be represented in a global conformal


diagram of Kerr spacetime. However we can draw in the conformal diagram, the lines corresponding
to the largest and smallest radius in the boundary of the noncausal region. Those are the red and salmon
lines in the graph of figure 7 . The b in the graph, is just to indicate that the red and salmon lines are
extreme points of the noncausal region. It should be emphasized however that other points, outside
the noncausal region, might be drawn in the conformal diagram into the two dimensional area in the
graph between the red and salmon lines. This is expected, since one is dealing with a four dimensional
spacetime, but one is drawing two dimensional conformal diagrams. In fact, recall that for regular
regions, as those of type I and II, all points in a particular sphere rs =constant, are plotted in the same
point in the conformal diagram.


The zone c is the zone of region III where r is negative and outside the noncausal region. We denote
this as the region IIIc.


The bottom line is that the topological causal properties of the four dimensional manifold can be
deduced from the structure of the conformal diagram that we have just introduced. Therefore, since in
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Figure 7. Conformal diagram of the three immediate regions. Region III is subdivided
in zones a, b and c. Note that the red line denotes the boundary of the noncausal region,
and the ring singularity. The reason for the curly shape of these curves is that one regular
coordinates uses κ+ in its definition and the other uses κ−; as explained in the text. We
denote with ‘r− int’ the line in the conformal diagram indicating the value r= r− in
the interior region III, to distinguish it from the Cauchy horizon CR which also satisfies
r= r−. We denote with r=−∞+ and r=−∞− the asymptotic regimes of region
III, for r→−∞, to the future and to the past respectively. The notation CL and CR
was introduced before in the text. We denote with ‘r+ int’ the line in the conformal
diagram denoting the value r= r+ in the interior region II, to distinguish it from the
future horizon Hf , defined previously. We use I+ to denote future null infinity of the
physical region I. We use I− to denote past null infinity of the physical region I. Hp is
used as before to denote the past horizon of the black hole. As explained in the text, we
denote with rs0 the value of rs at the ring singularity, where the value of the r coordinate
is 0. Also, we use rs1 to denote the value of rs at the extreme of the noncausal region,
for the smallest value of the coordinate r; estimated to be around−0.9 for our choice of
geometrical parametersm and a. The region IIIa correspond to points in region III where
the radial coordinate is larger or equal than zero, r⩾ 0. The region IIIc correspond to
the points in the zone of region III where r< 0 and are outside of the noncausal region
IIIb. As explained, region IIIb cannot be drawn in the conformal diagram, but we can
draw the line corresponding to the largest value of r, and the line corresponding to its
smallest value in the noncausal region.


region III one is missing the noncausal zone, the topology implied by the original Carter conformal
diagram at the symmetry axis, cannot be extended to the global spacetime. This subtle point is generally
missed, since even in textbooks [20], the introduction of conformal diagrams of Kerr spacetime do
not mention this issue. In fact in those diagrams, one cannot draw timelike curves, not even the ring
singularity with precision, since the authors do not have or provide, the set of needed double null
coordinates that would allow for those drawings. We solve this situation with our present work.
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8. Final comments


In this article, we have presented for the first time, an explicit construction of a conformal diagram
for the spacetime of a black hole with angular momentum, which is valid globally; as opposed to the
previous ones that where only valid at the axis of symmetry.


We have shown how to define appropriate smooth null coordinates across outer and inner horizons,
so that our construction allows us to extend these diagrams to the complete spacetime, where now each
point represents the intersection of the null coordinates.


All previous findings on the global causal structure of Kerr spacetime [19] can be reproduced with
our choice of double null coordinates, of type (u, v) and of type (U,V); with the advantage that now
we can visualize this structure through the global conformal diagrams as that of figure 7. Although we
have concentrated in this article in regions I, II and III, it is clear that our construction can be naturally
extended to the maximal analytic manifold [12]; so that we givemeaning to diagrams of the type shown
in figure 2 outside of the axis of symmetry.


Previous presentations of conformal diagrams of the extended Kerr geometry [20, 21] were of
qualitative nature andwere not able to calculate in the graph specific curves or regions. For instance, the
graphs in figures 11.7 and 11.8 of [21] are not ‘global conformal diagrams’ since they are constructed
from demanding that two coordinates are maintained fixed; so that the curves we computed in this
work cannot be drawn on those diagrams. In particular, in [21] the authors erroneously state, copying
an error from the MTW textbook [22], that their function v is null, (which in [22] is called Ṽ). Since we
use these symbols in our article we rename their function to vK , since Kerr used the retarded version
of it. Then one can readily calculate that gabdvKa dv


K
b =− a2 sin(θ)2


r2+a2 cos(θ)2 ; which is different from zero at
generic points, and therefore indicates that it is not a null coordinate. Note that the contraction is
zero at the axis of symmetry. In the MTW textbook the error appears in point 10−3, in page 880 of
the 1973 edition. This mistake might be the source of the general belief in the community that Kerr
spacetime was almost as easy as Schwarzschild one. But in fact, the subtleties of Kerr geometry make
all discussions much more difficult. A confusing fact, for example, is that the function vK contains the
geodesics defining the principal null directions; but this null congruence has twist and therefore does
not define a null function. For this reason in [13] we dealt with a null congruence without twist, that
allowed us to define our pair of null coordinates for Kerr spacetime.


In contrast to this, our explicit construction of conformal diagrams for Kerr spacetime, has permitted
us here to numerically draw arbitrary curves, as those shown in figure 3, and the boundary of the
noncausal region, depicted in figure 7 .


The possibility to construct these type of global conformal diagrams contributes to the visual under-
standing of the global structure of the spacetime.
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